首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accurate radiative transfer model GOMETRAN, initially designed to yield radiances at TOA in the wavelength range 240–790 nm, has been extended to allow for the computation of actinic fluxes down to 175 nm and for the calculation of photolysis frequencies in the atmosphere. The capability of the extended model PHOTOGT (PHOTOGOMETRAN) is demonstrated in a number of successful comparison studies both with recent experiments (ground-based, balloonborne, airborne) and model calculations of radiances, actinic fluxes and photolysis frequencies in the stratosphere and troposphere. In an atmospheric case study, the impact of new quantum yield data for the O3 » O2+O(1 d) photodissociation channel on the photolytic production of O(1 d) atoms in the lower atmosphere has been quantified.  相似文献   

2.
Factors influencing the18O content of stratospheric H2O are reviewed in order to provide a theoretical framework for the interpretation of measurements of this quantity, which are now becoming available. Depletions in18O of 5–10% in stratospheric H2O are expected based on the known correlation between that of D and18O in tropospheric H2O and observed measurements of large (typically 50%) depletions of D in stratospheric H2O. H2O formed in the stratosphere as a result of oxidation of CH4 can be expected to reflect primarily the18O content of stratospheric O2, which is the same as that of tropospheric O2 (slightly enhanced with respect to standard mean ocean water). Thus, a reduction in the18O depletion is expected with increasing altitude, but not a large enhancement in18O in upper stratospheric H2O as found in recent far infrared measurements. The observed large enhancement of18O in stratospheric O3 is not expected to be reflected in stratospheric H2O. Necessary laboratory data for the improved quantification of these effects are reviewed.  相似文献   

3.
Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February–March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O3 and N2O, among others, spanning a latitude from 5°S to 80°N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February–March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O3 and N2O values, where the differences are within 1 ppmv for O3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O3 (1–1.5 ppmv) and the tropical lower stratospheric N2O (15–30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes.  相似文献   

4.
The interpretation of atmospheric measurements and the forecasting of the atmospheric composition require a hierarchy of accurate chemical transport and global circulation models. Here, the results of studies using Bremens Atmospheric Photochemical Model (BRAPHO) are presented. The focus of this study is given to the calculation of the atmospheric photolysis frequencies It is shown that the spectral high resolved simulation of the O2 Schumann–Runge bands leads to differences in the order of 10% in the calculated O2 photolysis frequency when compared with parameterizations used in other atmospheric models. Detailed treatment of the NO absorption leads to even larger differences (in the order of 50%) compared to standard parameterizations. Refraction leads to a significant increase in the photolysis frequencies at large solar zenith angles and, under polar spring conditions, to a significant change in the nighttime mixing ratio of some trace gases, e.g., NO3. It appears that recent changes in some important rate constants significantly alter the simulated BrOx- and HOx-budgets in the mid-latitude stratosphere.  相似文献   

5.
In 1978–1980 nine aircraft flights to an altitude of up to 15 km were made over western Europe. Sulfur dioxide was measured with a sensitive chemiluminescence method consisting of separate sampling and analysis stages and application of a wet chemical filter procedure (detection limit: 8 pptv SO2).The measurements performed in the upper troposphere and lower stratosphere lead to some unexpected results: (a) the meteorological conditions at the tropopause level have an important influence on the observed SO2 mixing ratio; (b) between the 500 mb and the actual tropopause level the SO2 mixing ratio is found to be <100 pptv, and weak vertical gradients of SO2 suggest only a small flux of tropospheric SO2 into the stratosphere; (c) increasing SO2 mixing ratios within the first kilometers of the stratosphere give strong support to a stratospheric source of SO2.In the light of improved one-dimensional models considering the vertical distribution of stratospheric sulfur compounds (Crutzen, 1981; Turco et al. 1981) it can be shown that the oxidation of organic sulfur compounds (e.g., OCS, CS2) seems to be a stratospheric source of SO2. Furthermore, the flux calculations based on the SO2 mixing ratios measured at the tropopause level indicate that the contribution of tropospheric (man-made) SO2 to the stratospheric aerosol layer is of only minor importance.  相似文献   

6.
Abstract

A coupled 1‐D radiative‐convective and photochemical diffusion model is used to study the influence of ozone photochemistry on changes in the vertical temperature structure and surface climate resulting from the doubling of atmospheric CO2, N2O, CH4 and increased stratospheric aerosols owing to the El Chichón volcanic eruption. It is found when CO2 alone is doubled, that the total ozone column increases by nearly 6% and the resulting increase in the solar heating contributes a smaller temperature decrease in the stratosphere (up to 4 K near the stratopause level). When the concentration of CO2, N2O and CH4 are simultaneously doubled, the total ozone column amount increases by only 2.5% resulting in a reduced temperature recovery in the stratosphere. Additional results concerning the effect of the interaction of ozone photochemistry with the stratospheric aerosol cloud produced by the El Chichón eruption show that it leads to a reduction in stratospheric ozone, which in turn has the effect of increasing the cooling at the surface and above the cloud centre while causing a slight warming below in the lower stratosphere.  相似文献   

7.
The momentum flux of stratospheric gravity waves generated by Typhoon Ewiniar (2006) is examined using a Weather Research and Forecasting (WRF) model. In the stratosphere, zonal momentum flux with a positive sign by eastward-propagating waves is significant during the northward moving of the typhoon, while both zonal and meridional momentum fluxes with positive signs are significant during the typhoon decaying stage in which the typhoon moves northeastward. The magnitude of the momentum flux is greater during the mature stage of the typhoon than the decaying stage, and the phase speeds of the dominant momentum flux are less than 30 m s?1 with a peak at 10–16 m s?1. Positive momentum flux decreases with height overall in the stratosphere for both zonal and meridional components. The resultant gravity-wave drag forcing plays a role to decelerate the easterly background wind in the stratosphere. This drag forcing is relatively large above z = 40 km and below z = 20 km, and lower stratospheric wave drag is expected to affect the typhoon dynamics by modifying the background wind shear and inducing the secondary circulation in the troposphere.  相似文献   

8.
利用中尺度大气化学模式WRF/Chem对2013年3月6日华南地区一次平流层入侵事件及其对对流层低层臭氧的影响进行模拟研究。通过加入UBC(Upper Boundary Condition)上边界处理方案,弥补WRF/Chem模式未考虑平流层臭氧化学反应的不足。结合臭氧探空廓线资料、地面O3、CO、NOx、相对湿度、温度和风速等观测资料以及再分析资料对模拟结果进行定量评估,结果表明模式能较为真实地模拟本次平流层入侵过程。模拟分析进一步揭示:(1)副热带高空急流是本次平流层入侵的主要原因。当华南地区处在副热带急流入口区左侧下沉区域时,平流层入侵将富含臭氧的干燥空气输送到对流层中低层。(2)本次平流层入侵对对流层低层臭氧收支有重要影响,导致香港地区近地层臭氧体积混合比浓度明显上升,如塔门站夜间臭氧浓度升高21.3 ppb(1 ppb=1×10-9)。地面气象场和化学物种的分析进一步确认了平流层入侵的贡献。(3)采用动力学对流层顶高度时零维箱式模型和Wei公式计算得到的平流层入侵通量相当,分别为-1.42×10-3 kg m-2 s-1和-1.59×10-3 kg m-2 s-1,这一结果与前人研究相吻合,且与采用热力学对流层顶高度计算所得到的结果具有可比性。  相似文献   

9.
Abstract

To evaluate future climate change in the middle atmosphere and the chemistry–climate interaction of stratospheric ozone, we performed a long-term simulation from 1960 to 2050 with boundary conditions from the Intergovernmental Panel on Climate Change A1B greenhouse gas scenario and the World Meteorological Organization Ab halogen scenario using the chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). In addition to this standard simulation we performed five sensitivity simulations from 2000 to 2050 using the rerun files of the simulation mentioned above. For these sensitivity simulations we used the same model setup as in the standard simulation but changed the boundary conditions for carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone-depleting substances (ODS). In the first sensitivity simulation we fixed the mixing ratios of CO2, CH4, and N2O in the boundary conditions to the amounts for 2000. In each of the four other sensitivity simulations we fixed the boundary conditions of only one of CO2, CH4, N2O, or ODS to the year 2000.

In our model simulations the future evolution of greenhouse gases leads to significant cooling in the stratosphere and mesosphere. Increasing CO2 mixing ratios make the largest contributions to this radiative cooling, followed by increasing stratospheric CH4, which also forms additional H2O in the upper stratosphere and mesosphere. Increasing N2O mixing ratios makes the smallest contributions to the cooling. The simulated ozone recovery leads to warming of the middle atmosphere.

In the EMAC model the future development of ozone is influenced by several factors. 1) Cooler temperatures lead to an increase in ozone in the upper stratosphere. The strongest contribution to this ozone production is cooling due to increasing CO2 mixing ratios, followed by increasing CH4. 2) Decreasing ODS mixing ratios lead to ozone recovery, but the contribution to the total ozone increase in the upper stratosphere is only slightly higher than the contribution of the cooling by greenhouse gases. In the polar lower stratosphere a decrease in ODS is mainly responsible for ozone recovery. 3) Higher NOx and HOx mixing ratios due to increased N2O and CH4 lead to intensified ozone destruction, primarily in the middle and upper stratosphere, from additional NOx; in the mesosphere the intensified ozone destruction is caused by additional HOx. In comparison to the increase in ozone due to decreasing ODS, ozone destruction caused by increased NOx is of similar importance in some regions, especially in the middle stratosphere. 4) In the stratosphere the enhancement of the Brewer-Dobson circulation leads to a change in ozone transport. In the polar stratosphere increased downwelling leads to additional ozone in the future, especially at high northern latitudes. The dynamical impact on ozone development is higher at some altitudes in the polar stratosphere than the ozone increase due to cooler temperatures. In the tropical lower stratosphere increased residual vertical upward transport leads to a decrease in ozone.  相似文献   

10.
We have used a two dimensional radiative-chemical-transport model of the stratosphere to investigate the sensitivity of trace gas distributions to absorption of oxygen in the wavelength region 175–210 nm. Two different formulations for the Herzberg continuum absorption cross sections are used. The calculated transmission of ultra-violet light in the stratosphere is lower and higher than observed, depending on the choice of absorption cross section. For the higher transmission O3, ClO, and HO2 are found to be significantly increased in the lower stratosphere. Calculated O3 in the upper stratosphere, chlorofluorocarbons, N2O and odd-nitrogen are lower. The photolysis of oxygen is considerably faster at high latitudes implying that the photochemical recovery of depleted polar ozone is faster than currently assumed.  相似文献   

11.
A one-dimensional coupled climate and chemistry model has been developed to estimate past and possible future changes in atmospheric temperatures and chemical composition due to human activities. The model takes into account heat flux into the oceans and uses a new tropospheric temperature lapse rate formulation. As found in other studies, we estimate that the combined greenhouse effect of CH4, O3, CF2Cl2, CFCl3 and N2O in the future will be about as large as that of CO2. Our model calculates an increase in average global surface temperatures by about 0.6°C since the start of the industrial era and predicts for A.D. 2050 a twice as large additional rise. Substantial depletions of ozone in the upper stratosphere by between 25% and 55% are calculated, depending on scenario. Accompanying temperature changes are between 15°C and 25°C. Bromine compounds are found to be important, if no rigid international regulations on CFC emissions are effective. Our model may, however, concivably underestimate possible effects of CFCl3, CF2Cl2, C2F3Cl3 and other CFC and organic bromine emissions on lower stratospheric ozone, because it can not simulate the rapid breakdown of ozone which is now being observed worldwide. An uncertainty study regarding the photochemistry of stratospheric ozone, especially in the region below about 25 km, is included. We propose a reaction, involving excited molecular oxygen formation from ozone photolysis, as a possible solution to the problem of ozone concentrations calculated to be too low above 45 km. We also estimate that tropospheric ozone concentrations have grown strongly in the northern hemisphere since pre-industrial times and that further large increases may take place, especially if global emissions of NOx from fossil fuel and biomass burning were to continue to increase. Growing NOx emissions from aircraft may play an important role in ozone concentrations in the upper troposphere and low stratosphere.  相似文献   

12.
We present a theory for the formation of frozen aerosol particles in the Antarctic stratosphere, the coldest region of the Earth's stratosphere. The theory is applied specifically to the formation of polar stratospheric clouds. We suggest that the condensed ices are composed primarily of nitric acid and water with small admixtures of other compounds such as H2SO4 and HCl in solid solution. Our assumed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinctions observed in the winter polar stratosphere. Physical chemistry and thermodynamic considerations suggest that at temperatures between about 200 and 185 K, stratospheric particulates are composed primarily of frozen nitric acid solutions with a composition near that of the trihydrate. Available data suggest the particles are amorphous solid solutions and not in the crystalline hydrate form. At lower temperatures (i.e., below the forst point of pure water) cirrus-like ice clouds can form.  相似文献   

13.
The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10–20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NO x from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.  相似文献   

14.
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H2O on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H2O. The chemical effects of this H2O increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%--6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000--2050 than between 2050--2100, driven mainly by the larger relative change in chlorine in the earlier period.  相似文献   

15.
The effect of the overlapping band of atmospheric gases and its treatment on the calculation of flux and cooling rate due to the long wave radiation is investigated in detail by a new transmission model for overlapping bands, taking the 15 μm band of CO2 as an example. It is found that the presence of band overlapping has a quite significant influence on radiative fluxes and cooling rates in the upper stratosphere and the troposphere, in particular, at the earth's surface. However, in the middle-lower stratosphere, the overlapping effect appears to be insignificant. It is also shown that the usual wide-band transmission model treating the overlapping effect overestimates the net longwave fluxes in the lower stratosphere and, in particular, in the troposphere including the surface. But, in the middle-upper stratosphere, the contrary is the case.  相似文献   

16.
A 2-D global chemistry-transport model is set up in this paper.The model simulates the atmospheric ozone distributions well with specified dynamical conditions.The analysis of ozone variation mechanism shows that ozone is chemically in quasi-equilibrium except for the polar night region where the variation of ozone concentration is under the control of dynamical processes,that the oxygen atoms which produce ozone are mainly provided by the photolysis of O2 in the upper stratosphere and by the photolysis of NO2 in the lower stratosphere and the troposphere.and that the ozone is destroyed mainly by NOx:the reactions between NOx and O3 and the odd oxygen cycle contribute 80% to more than 90% of the ozone destruction.  相似文献   

17.
It is still not well understood if subseasonal variability of the local PM2.5 in the Beijing-Tianjin-Hebei (BTH) region is affected by the stratospheric state. Using PM2.5 observations and the ERA5 reanalysis, the evolution of the air quality in BTH during the January 2021 sudden stratospheric warming (SSW) is explored. The subseasonal variability of the PM2.5 concentration after the SSW onset is evidently enhanced. Stratospheric circumpolar easterly anomalies lasted for 53 days during the January–February 2021 SSW with two evident stratospheric pulses arriving at the ground. During the tropospheric wave weakening period and the intermittent period of dormant stratospheric pulses, the East Asian winter monsoon weakened, anomalous temperature inversion developed in the lower troposphere, anomalous surface southerlies prevailed, atmospheric moisture increased, and the boundary layer top height lowered, all of which favor the accumulation of pollutant particulates, leading to two periods of pollution processes in the BTH region. In the phase of strengthened East Asian winter monsoon around the very beginning of the SSW and another two periods when stratospheric pulses had reached the near surface, opposite-signed circulation patterns and meteorological conditions were observed, which helped to dilute and diffuse air pollutants in the BTH region. As a result, the air quality was excellent during the two periods when the stratospheric pulse had reached the near surface. The increased subseasonal variation of the regional pollutant particulates after the SSW onset highlights the important role of the stratosphere in the regional environment and provides implications for the environmental prediction.  相似文献   

18.
Photoelectric detectors for the measurement of photolysis frequencies of different trace gases in the atmosphere are described. They exhibit uniform response characteristics over one hemisphere (2 sr) and wavelength characteristics closely matched to those of the photolysis frequencies J O1D, J NO2, and J NO3, respectively. Absolute calibration of the J O1D detector was performed by chemical actinometry with an accuracy of ±16 percent. Simultaneous measurements of J NO2 and J O1D are presented.  相似文献   

19.
根据一个诊断极区平流层温度变化的近似方程及其滑动累加计算方案,采用1980—2000年的MERRA-2再分析日资料计算了北半球极区低平流层100 hPa逐月的温度增量项、动力加热项和非绝热加热项,以及各项的线性趋势。结果表明,各月温度增量项与累积的动力和非绝热加热之和在气候平均的年循环意义上接近平衡,而且它们的趋势也近似平衡。进一步通过多元回归,得到了动力和非绝热加热作用对当前月温度趋势的分别贡献,动力作用是北极低平流层冬季温度趋势的主导因素并且在冬季内不一致,而非绝热作用在其他季节是主导因素。  相似文献   

20.
Telecommunication laser diodes emitting near 1.39 m and 1.65 m in combination with direct-differential absorption spectroscopy are efficient tools to monitor in situ stratospheric H2O andCH4 with a good precision error (a few percents), a high temporal resolution (ranging from 10 ms to 1 s), a large dynamic range in the concentration measurements (four orders of magnitude) and a high selectivity in the analyte species. To illustrate the capability of laser probing technique, we report balloonborne H2Oand CH4 simultaneous measurements obtained on October 2001 atmidlatitudes (43° N). The H2O vertical profile achieved with the lasersensor in the lower stratosphere is compared with the H2O data yielded by a balloonborne frost-point hygrometer. The total hydrogen mixing ratio in the lower stratosphere, 2[CH4] + [H2O], appears to beconstant at 7.5 ± 0.1 ppmv. Nevertheless, an unexpected largedehydration of 0.5 ppmv was detected by both the laser sensor and thehygrometer between 16 km and 23 km. We suspect the occurrence of a tropicalair intrusion into mid-latitudes. We support this interpretation using a high-resolution advection model for potential vorticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号