首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3D earthquake locations, focal mechanisms and stress tensor distribution in a 16‐month interval covering the 2018 Mt. Etna flank eruption, enabled us to investigate the relationship between magma intrusion and structural response of the volcano and shed light on the dynamic processes affecting the instability of Mt. Etna. The magma intrusion likely caused tension in the flanks of the volcano, leading to significant ground deformation and redistribution of stress on the neighbouring faults at the edge of Mt. Etna's unstable sector, encouraging the ESE sliding of the eastern flank of the volcano. Accordingly, FPSs of the post‐eruptive events show strike slip faulting mechanisms, under a stress regime characterized by a maximum compressive σ1, NE‐SW oriented. In this perspective, any flank eruption could temporarily enhance the sliding process of both the southern and eastern flanks of the volcano.  相似文献   

2.
After a recharge phase that began in 2007, on 13 May 2008, a new eruption started on Mt. Etna volcano. The final intrusion was very fast, accompanied by a violent seismic swarm and marked by ground deformation recorded at permanent tilt and GPS stations. The violence of the eruptive event generated concern that the eruptive fissures might propagate downslope towards populated areas. The ground deformation modelling explains both the mechanism of the intrusion as well as the attempt of the dyke to propagate in the shallower part of the northern sector of the volcano. We show that the 2008 intrusion was characterized by a mechanism, which is new and different to the ones modelled in previous eruptions, following the path of the central conduit in the first part of the intrusion (below 1.6 km) and then breaking off towards the east in the last shallow part.  相似文献   

3.
On December 24th, Mt. Etna volcano underwent a seismic crisis beneath the summit and upper southern flank of the volcano, accompanied by significant ash emission. Eruptive fissures opened at the base of summit craters, propagating SE‐wards. This lateral eruption lasted until December 27th. Despite the small eruption, seismic swarm and ground deformation were very strong. Sentinel‐1 interferograms show a wide and intense ground deformation with some additional features related to volcano‐tectonic structures. We inverted DInSAR data to characterise the magma intrusion. The resulting model indicates that a large dyke intruded but aborted its upraise at about the sea level; however, this big intrusion stretched the edifice, promoting the opening of the eruptive fissures fed by a shallower small dyke, and activating also several faults. This model highlights that a big intrusion beneath a structurally complex volcano represents a main issue even if the eruption is aborted.  相似文献   

4.
Surface deformations on the western flank of Mt Etna volcano, spanning 1980–2004, have been analysed as they pertain to stress interactions between magma intrusions within the shallow crust along the S–SE Rift and faulting sensitivity. During this period, an accurate analysis of strain parameters, computed by inversion of SW electro‐optical distance data, suggested that the observed strong displacements on this flank of the edifice can also be related to dextral shear movements along a roughly NE–SW buried fault crossing the area covered by this network, as supported by seismic observations of the 20–24 April 2001 swarm. Moreover, Coulomb stress change model analysis confirms that the displacement along this fault, heralding the July–August 2001 eruption 2 months earlier can be related to major stresses applied by a dike intrusion at depth along the S–SE Rift, as testified by the microseismicity occurring between November 2000 and 19 April 2001.  相似文献   

5.
The aim of this study is to understand the seismic characteristics of fault systems, which play key roles in the geodynamics of the Mt. Etna and the ascending magma. Understanding the seismic behaviour of fault systems and their relationship to volcanic and seismic phenomena may provide a useful contribution to a better understanding of dynamic processes at Mt. Etna. The seismicity in two periods (1874–1913 and 1981–1996), which include some important eruptions, have been analysed. Quantitative analysis of seismicity has been performed. Calculating fractal dimension allows us to distinguish between random, periodic and clustered scale-invariant time distributions of volcanic events. Correlations between fractal clustering evolution at long, mid and short term and eruptive processes has been found.  相似文献   

6.
New gravity and aeromagnetic data from Mt Etna volcano are presented which provide evidence for and constraints on relatively dense, high magnetization bodies at shallow levels below the summit craters. These are modelled and interpreted in terms of dyke/sill complexes, which may be the sites of short-term magma storage. A similar but larger body with high density and high magnetization is modelled below the southern wall of the Valle de Bove and may be the remnant of a prehistoric storage system. This body is close to the Valle del Bove, a major collapse feature, and may have influenced its geometry by buttressing and/or focusing zones of weakness.  相似文献   

7.
处于扬子与华夏古板块加里东期拼贴带的武功山热穹隆,以造山期变形花岗岩为中心,南华一寒武系遭受绿片岩相一低角闪岩相变质并形成变质矿物分带,环绕岩体分布,与中生代以来伸展形成的脆性断裂系统构成外环,共同组合形成屹立于晚古生代地层分布区的穹隆状构造。在区域递增变质带基础上,造山早期,深部初始重熔岩浆与深埋的变质岩发生交代形成原地型英云闪长质“混染岩浆”,岩浆上浸过程中,活动组分不断作用于围岩,致使围岩的成分、结构构造产生重新调整,形成岩体边缘混合岩。同时,由于硅铝质围岩组分加入,酸度增加,而渐变过渡为花岗闪长质岩浆。造山晚期,进一步演化为岩浆型正常花岗岩,并呈套叠状侵入于早期岩体之中。从早到晚构成同源岩浆演化系列,并发育明显构造应力变形。热穹隆区加里东期形成递进渐增变质一岩体边缘混合一变形花岗岩“三位一体”分布格局。中生代伸展一岩浆作用的复合叠加,进一步强化了热穹隆的构造背景。大致在旱白垩世末基本定型。  相似文献   

8.
Understanding the process of volcanic lateral collapse, which may be governed by numerous possible factors, can be significantly improved by identifying the role of each factor. Here we test the perturbation induced in a volcano by tectonic normal faulting in the basement, magma inflation and multiple flank deformation, based on fieldwork and analogue experiments. Ollagüe Volcano (Chile‐Bolivia) provides a good example of a sector collapse with exposed substrate extensional tectonics, and our experiments have been done with conditions consistent with field data. Results show that none of the possible tectonic conditions led to complete lateral failure; in agreement also with the field data, sector collapse of the model cone occurred only when a shallow magmatic intrusion within the volcano was reproduced. We also found out that volcano flank deformation is enhanced if a previous flank destabilization occurred, interleaved by new cone growth. Terra Nova, 18, 282–289, 2006  相似文献   

9.
Benchmarks installed on the upper eastern flank of Mt. Etna in 1982 have subsided continually since then, with the rate of subsidence twice accelerating prior to eruptions. The first of these eruptions was in December 1985, and the second in September 1989. This pattern of accelerating downslope movement has also been observed prior to landslides, and recent work applying knowledge of the failure of materials has shown that analysis of the inverse rate of these movements can be used to predict the time of failure. Post-eruption analyses of geodetic or seismic data from volcanoes has shown that in several cases, this approach could have been used to forecast eruptions weeks in advance. Applying the same principles to the accelerating subsidence on Mt. Etna's eastern flank prior to the eruptions of 1985 and 1989 shows that rough estimates of eruption dates could have been obtained several months in advance. These observations also suggest a speculative eruption-triggering mechanism involving an interplay between slope creep deformation and extensional weakening over the zone of intrusion.  相似文献   

10.
New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma–Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation–Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC–AFC) formulation. J. Petrol. 999–1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation–fractional crystallization (EC–AFC) model to magmatic systems. J. Petrol. 1019–1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9–10 km) is a fundamental process controlling magma compositions at Mt. Somma–Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions.  相似文献   

11.
The size distributions of crystals of olivine, plagioclase and oxides of the 1991/93 eruption at Mt. Etna (Italy) are analyzed. The simultaneous collection of this information for different minerals gives precious insight into the cooling history of lavas. Three distinct episodes are detectable: a storage of the magma in a deep reservoir, characterized by nearly constant and low nucleation and growth rates (near to equilibrium); an ascent phase, with an ever increasing nucleation rate related to volatile exsolution; and finally a quenching phase. In addition to geochemical and geophysical evidence, the similarity of the crystal size distributions of the present eruption with those of previous ones of this century makes it possible to exclude that crystal size distributions of Etnean lavas are due to mixing of different populations. This strongly suggests that the main features of the volcano feeding system have not changed despite observed variations in the magma output rates.  相似文献   

12.
Volcanic tremor and SO2 data, measured between 1987 and 1992 on Mt. Etna, have been studied. A cross-correlation analysis between the two time series has revealed large cross-correlation coefficients corresponding to enhanced volcanic activity. Tremor and SO2 emissions thus seem to have a common physical origin linked to the magma dynamics of the volcano.  相似文献   

13.
Pressure variations in a magma reservoir may cause deformation at the surface and a redistribution of the stress in the surrounding rock. In this study, we use two‐dimensional numerical models and elaborate how magma chamber inflation and deflation affect the stress field around and surface displacement. We test how a pre‐existing normal fault near the magma reservoir may influence the pattern of stress. We demonstrate the possibility of initiating both normal and reverse slip on faults during the inflation of the magma reservoir. The Coulomb failure stress changes are calculated during the periods of pressure variation. An increase of Coulomb failure stress can be predicted above and below the magma chamber during increasing magma chamber pressure that may encourage earthquakes. This process can produce cracks and fault growth encouraging magma propagation along the cracked zone. A different distribution of the stress change is expected in the case of subsequent deflation of the overpressured magma reservoir. In this case, seismicity is expected on a plane at equal depth than the magma chamber, laterally offset from the extent of the magma chamber. Magma could propagate laterally from the magma reservoir into zones where cracks have been generated, but only if the resolved shear stress on the fault is small compared with the excess magma pressure.  相似文献   

14.
The eastern flank of Mt. Etna volcano rests on Pleistocene marine sediments, which unconformably cover the Apenninic–Maghrebian Chain units. A quantitative biostratigraphic analysis was carried out based on the calcareous nannofossil content of the Pleistocene deposits outcropping along the S and NE periphery of the volcano. Sediments were constrained to the MNN19e and MNN19f biozones, deposited from 1.2 to 0.589 Ma. According to the depth of deposition and the present altitude of the Pleistocene succession, uplift rates are estimated between 1.1 and 1.7 mm yr−1 for the northeastern sector of the Etna edifice, and between 0.36 and 0.61 mm yr−1 for the southern one. This inhomogeneous long-term uplift rate affecting the Etna region, probably results from a buried thrust below the northern flank of Etna, which is related to the post-Tortonian geodynamic evolution of NE Sicily.  相似文献   

15.
During the spring of 2007, paroxysmal activity occurred at the Southeast Crater of Mt. Etna, always associated with sharp rises in the amplitude of the volcanic tremor. Activity ranged from strong Strombolian explosions to lava fountains coupled with copious emission of lava flows and tephra. During inter-eruptive periods, recurrent seismic unrest episodes were observed in the form of temporary enhancements of the volcanic tremor amplitude, but they did not culminate in eruptive activity. Here, we present the results of an analysis of these inter-eruptive periods by integrating seismic volcanic tremor, in-soil radon, plume SO2 flux, and thermal data. SO2 flux and thermal radiation are envisaged as the “smoking gun,” and certifying that changes in seismic or radon data can be considered as volcanogenic. Short-term changes were investigated by pattern classification based on Kohonen maps and fuzzy clustering on volcanic tremor, radon, and ambient parameters (pressure and temperature). Our results unveil “failed” eruptions between February and April 2007 that are explained as ascending magma batches, which triggered repeated episodes of gas pulses and rock fracturing, but that failed to reach the surface.  相似文献   

16.
Buoyancy controls the ability of magma to rise, its ascent rate and the style of the eruptions. Geophysical, geological and petrological data have been integrated to evaluate the buoyancy of magmas at Mt Etna. The density difference between host rocks and magmas is mainly related to the amount of H2O dissolved in the magma and to the bubble‐liquid separation processes. In the depth interval 22–2 km b.s.l. highly hydrated (H2O ~ 3%) basaltic magmas or mixtures of bubbles + liquid have positive buoyancy and rise rapidly. Conversely, bubble‐depleted liquids, with an intermediate H2O content (~ 1.5%), having neutral buoyancy, will spread out and form magmatic reservoirs at different depths until cooling/crystallization further modify composition and density. These different processes account for the magma compositions, location of magmatic reservoirs as determined by geophysical methods, and the complex eruptive cycles (slow effusions, fire fountains and Plinian eruptions) that have been observed in the history of the volcano.  相似文献   

17.
Large variations of the CO2 flux through the soil were observed between November 2002 and January 2006 at Mt. Etna volcano. In many cases, the CO2 flux was strongly influenced by changes in air temperature and atmospheric pressure. A new filtering method was then developed to remove the atmospheric influences on soil CO2 flux and, at the same time, to highlight the variations strictly related to volcanic activity. Successively, the CO2 corrected data were quantitatively compared with the spectral amplitude of the volcanic tremor by cross correlation function, cross-wavelet spectrum and wavelet coherence. These analyses suggested that the soil CO2 flux variations preceded those of volcanic tremor by about 50 days. Given that volcanic tremor is linked to the shallow (a few kilometer) magma dynamics and soil CO2 flux related to the deeper (~12 km b.s.l.) magma dynamics, the “delayed similarity” between the CO2 flux and the volcanic tremor amplitude was used to assess the average speed in the magma uprising into the crust, as about 170–260 m per day. Finally, the large amount of CO2 released before the onset of the 2004–2005 eruption indicated a deep ingression of new magma, which might have triggered such an eruption.  相似文献   

18.
We present the application of a classification method based on Kohonen maps and fuzzy clustering to geochemical analyses of volcanic products erupted on Mt. Etna from 1995 to 2005. Based on 13 major and trace elements, the classification allows a new way to visualize distinct compositional features of magma both considering long period as well as single eruptive events, such as in 2001 and 2002–03 flank eruptions. Products of the various vents do not necessarily form homogeneous groups, but show clear trends of chemical evolution with time. Using a convenient color code, the graphical visualization of the results in just a single picture allows the rapid identification of the compositional features of each sample and their comparison with all the products analyzed in the 10-year-long time span. This single picture accounts for the mutual interactions of the 13 components avoiding shortcomings of classical low-dimensional plots where components relevant for the discrimination have to be found in a priori study of many diagrams. On the basis of the synoptic information provided by pattern classification, we identify links between the products of different eruptive vents which deliver a reliable picture of a multifaceted plumbing system, in agreement with geochemical and geophysical evidence reported in literature. The analysis of the 13-dimensional data set using the Kohonen maps and fuzzy clustering simultaneously turned out to be straightforward and easy. Accordingly, the results of this application will be useful also as a contextual data set for new data in future ongoing eruptive episodes.  相似文献   

19.
The emplacement of the Mesoproterozoic G?temar Pluton into Paleoproterozoic granitoid host rocks of the Transscandinavian Igneous Belt is re-examined by microfabric analysis, including cathodoluminescence microscopy. Field data on the pluton-host rock system are used to strengthen the model. The G?temar Pluton, situated on the Baltic Shield of SE Sweden, is a horizontally zoned tabular structure that was constructed by the intrusion of successive pulses of magma with different crystal/melt ratios, at an estimated crustal depth of 4–8?km. Initial pluton formation involved magma ascent along a vertical dike, which was arrested at a mechanical discontinuity within the granitoid host rocks; this led to the formation of an initial sill. Subsequent sill stacking and their constant inflation resulted in deformation and reheating of existing magma bodies, which also raised the pluton roof. This multi-stage emplacement scenario is indicated by complex dike relationships and the occurrence of several generations of quartz (Si-metasomatism). The sills were charged by different domains of a heterogeneous magma chamber with varying crystal/melt ratios. Ascent or emplacement of magma with a high crystal/melt ratio is indicated by syn-magmatic deformation of phenocrysts. Complex crystallization fabrics (e.g. oscillatory growth zoning caused by high crystal defect density, overgrowth and replacement features, resorbed and corroded crystal cores, rapakivi structure) are mostly related to processes within the main chamber, that is repeated magma mixing or water influx.  相似文献   

20.
Deformation structures in the wall rocks of igneous intrusions emplaced at shallow crustal depths preserve an important record of how space was created for magma in the host rocks. Trachyte Mesa, a small Oligocene age intrusion in the Henry Mountains, Utah, is composed of a series of stacked tabular, sheet-like intrusions emplaced at 3–3.5 km depth into sandstone-dominated sedimentary sequences of late Palaeozoic–Mesozoic age. New structural analysis of the spatial distribution, geometry, kinematics and relative timings of deformation structures in the host rocks of the intrusion has enabled the recognition of distinct pre-, syn-, and late-stage-emplacement deformation phases. Our observations suggest a two-stage growth mechanism for individual sheets where radial growth of a thin sheet was followed by vertical inflation. Dip-slip faults formed during vertical inflation; they are restricted to the tips of individual sheets due to strain localisation, with magma preferentially exploiting these faults, initiating sill (sheet) climbing. The order in which sheets are stacked impacts on the intrusion geometry and associated deformation of wall rocks. Our results offer new insights into the incremental intrusion geometries of shallow-level magmatic bodies and the potential impact of their emplacement on surrounding host rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号