首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A first generation of probabilistic seismic hazard maps of the Italian country are presented. They are based on seismogenic zoning deriving from a kinematic model of the structural tectonic units and on an earthquake catalogue with the foreshock and aftershock events filtered out. The following ground motion parameters have been investigated and mapped using attenuation equations based on strong-motion recordings of Italian earthquakes: peak ground acceleration and velocity; Arias intensity; strong motion duration; and the pseudovelocity and pseudoacceleration spectral values at 14 fixed frequencies both for the vertical and the largest horizontal component. A Poissonian model of earthquake occurrence is assumed as a default and the hazard maps are presented in terms of ground motion values expected to be exceeded at a 10% probability level in 50 years (return period 475 years) according to the requirement of Eurocode 8 for the seismic classification of national territories, as well as in terms of exceedance probabilities of selected ground motion values. Finally, as a tentative study, the use of hybrid methods (implementing both seismogenic zones and structures), renewal processes (including earthquake forecasting) and the influence of site effects (as the basis for the planning of earthquake scenarios) were explored.  相似文献   

2.
A method for the evaluation of seismic hazard in a given zone, taking into account both the spreading of macroseismic effects and seismic catalogue information, is applied. A data-bank of some 500 digitized isoseisms of earthquakes having occurred in Italy between 1542 and 1986 is used. The isoseismical maps are digitized considering for each degree of intensity the length of 24 spreading rays starting from the macroseismic epicenter or barycentre of the megaseismic area. These rays are separated from each other by the same angle, i.e. every isoseism is divided into 24 equal circular sectors. The year 1542 is taken as the beginning of the time span, since this is when the first seismic event occurred for which reliable isoseismal maps are available. The epicentral intensities considered lie between theVI andXI degrees of the Mercalli-Cancani-Sieberg scale (MCS). This digitized data-bank is analyzed to achieve, for each homogeneous seismogenetic zone that has been recognized, the mean azimuthal spreadings of effects for each degree of intensity as a function of the epicentral intensity. Once a mean propagation model is obtained for each zone, this is applied to seismic events of the same zone, the isoseismal maps of which are not available. A geographic grid is defined to cover the analyzed area, and for each cell of this grid it is then possible to count the number of felt events and their degree. These effects have been evaluated either on the basis of the isoseismal maps (when available) or on the basis of the mean propagations of the zone in which the single event occurred. Moreover, an index summarizing the seismic information was computed for each cell of the previous grid. All the events producing effects and their provenance are stored on files, allowing the main seismogenic zones influencing this cell to be identified. This methodology has been applied to central and southern Italy in an area between the latitudes 40.6 and 43.3 N. In particular, attention is focussed on the sample areas of Rome (given the historical and political importance of the city) and of the Sannio-Matese and Irpinia zone (in which some of the strongest earthquakes of the Apennine chain have occurred). Finally, in order to evaluate the maximum expected magnitude, extreme value statistics (Gumbel III-type) are applied to the Colli Albani area, which represents the seismogenic zone nearest to Rome. For the Sannio-Matese and Irpinia area, considering the more dangerous zone as a ‘unicum’, theWeibull distribution has been hypothesized to determine the mean return time for events with an intensity greater than or equal to IX.  相似文献   

3.
A method for the evaluation of seismic hazard in a given zone, taking into account both the spreading of macroseismic effects and seismic catalogue information, is applied. A data-bank of some 500 digitized isoseisms of earthquakes having occurred in Italy between 1542 and 1986 is used. The isoseismical maps are digitized considering for each degree of intensity the length of 24 spreading rays starting from the macroseismic epicenter or barycentre of the megaseismic area. These rays are separated from each other by the same angle, i.e. every isoseism is divided into 24 equal circular sectors. The year 1542 is taken as the beginning of the time span, since this is when the first seismic event occurred for which reliable isoseismal maps are available. The epicentral intensities considered lie between theVI andXI degrees of the Mercalli-Cancani-Sieberg scale (MCS). This digitized data-bank is analyzed to achieve, for each homogeneous seismogenetic zone that has been recognized, the mean azimuthal spreadings of effects for each degree of intensity as a function of the epicentral intensity. Once a mean propagation model is obtained for each zone, this is applied to seismic events of the same zone, the isoseismal maps of which are not available. A geographic grid is defined to cover the analyzed area, and for each cell of this grid it is then possible to count the number of felt events and their degree. These effects have been evaluated either on the basis of the isoseismal maps (when available) or on the basis of the mean propagations of the zone in which the single event occurred. Moreover, an index summarizing the seismic information was computed for each cell of the previous grid. All the events producing effects and their provenance are stored on files, allowing the main seismogenic zones influencing this cell to be identified. This methodology has been applied to central and southern Italy in an area between the latitudes 40.6 and 43.3 N. In particular, attention is focussed on the sample areas of Rome (given the historical and political importance of the city) and of the Sannio-Matese and Irpinia zone (in which some of the strongest earthquakes of the Apennine chain have occurred). Finally, in order to evaluate the maximum expected magnitude, extreme value statistics (Gumbel III-type) are applied to the Colli Albani area, which represents the seismogenic zone nearest to Rome. For the Sannio-Matese and Irpinia area, considering the more dangerous zone as a unicum, theWeibull distribution has been hypothesized to determine the mean return time for events with an intensity greater than or equal to IX.  相似文献   

4.
A simplified tectonic scheme for hazard purposes was recently adopted for northeastern Italy, introducing large generalized seismogenic areas containing systems of complex geometry faults. This scheme considers only major faults with documented seismic activity. In the present analysis, a different tectonic scheme, with linear elements as seismogenic sources, is presented. The assessment of the regional seismic hazard is done with the fault rupture model, its most important advantage being the recognition that the length of fault rupture during an earthquake is an important consideration in probabilistic calculations of seismic hazard. Moreover, some structures with no associated seismicity but with notable neotectonic activity are considered, and their contribution to the results investigated. Important uncertainties such as those in the maximum possible magnitude of future earthquakes, in the location of the fault, in the focal depth, and in the attenuation law are accounted for in the calculations and their influence studied. The results identify a seismic belt running from Lake Garda to Friuli and along the Yugoslav coast and are very similar to those already known for Friuli, with the largest values corresponding to the zone around Gemona. Some slight differences in the shape of the areas of equal acceleration are probably due to the delineation of the seismic sources of the proposed model. For a cautious elaboration, some neotectonic lines without present seismicity were added into the fault model. Their contribution is negligible in the areas of highest acceleration, but increases remarkably in the areas where acceleration is not expected to exceed the medium values.  相似文献   

5.
Is compression across the northern Apennine fold‐and‐thrust system (Italy) still active? To address this question, we quantified the long‐term rates of migration and shortening of the system along with the measurement errors. Our approach integrates structural geology, seismicity patterns, and statistical treatment of tectonic activity. On the basis of recently published surface and subsurface data, we found a migration rate of 8.85 ± 0.61 mm yr−1. The inception age of individual fold structures follow closely this average rate, indicating that the system has been migrating at a constant rate for the past 17 Myr. Cumulative shortening of the system also increases linearly through time at 2.93 ± 0.31 mm yr−1. The location of the youngest structures in the easternmost portion of the system coincides with a significant peak of seismic moment released by historical earthquakes. We conclude that not only these easternmost thrusts are still active, but also that they generate earthquakes.  相似文献   

6.
The seismic hazard in the Sannio-Matese area has been worked out by a modification of the McGuire (1976) computing programme, taking into account the influence of nine potential seismic source zones.The method uses truncated-quadratic intensity-frequency distribution and azimuth-dependent intensity attenuation derived from isoseismal maps for each of the seismogenetic sources. A new modification has been introduced to take into account different decay of the intensity in the near (to VIII degree) and far (from VIII degree) field.Different assumptions about maximum possible intensities and truncation of intensity-frequency laws are used to evaluate the effects of the uncertainties on the computed hazard at high intensities. Intensities associated with different level of annual probability are computed for five test sites in the considered area. Maps displaying the expected intensity for a mean return period of 500 years (pa 0.002) are presented and compared with observed intensities.Presented at the XXIst General Assembly of the European Seismological Commission, Symposium on Methods of Seismic Hazard Assessment in Europe, Sofia, 23–27 August 1988.  相似文献   

7.
Gujarat is one of the fastest-growing states of India with high industrial activities coming up in major cities of the state. It is indispensable to analyse seismic hazard as the region is considered to be most seismically active in stable continental region of India. The Bhuj earthquake of 2001 has caused extensive damage in terms of causality and economic loss. In the present study, the seismic hazard of Gujarat evaluated using a probabilistic approach with the use of logic tree framework that minimizes the uncertainties in hazard assessment. The peak horizontal acceleration (PHA) and spectral acceleration (Sa) values were evaluated for 10 and 2?% probability of exceedance in 50?years. Two important geotechnical effects of earthquakes, site amplification and liquefaction, are also evaluated, considering site characterization based on site classes. The liquefaction return period for the entire state of Gujarat is evaluated using a performance-based approach. The maps of PHA and PGA values prepared in this study are very useful for seismic hazard mitigation of the region in future.  相似文献   

8.
The seismic hazard of Sannio-Matese is calculated using a new seismogenetic zoning of southern Italy of seven areas and different, azimuth-dependent, attenuation laws. Various approaches (Gumbel's first and third asymptotic distribution, Cornell) lead to similar results for the different exposure times considered (100 and 200 years) and probability levels (37 and 68%). The present seismic regulation proposed in 1980 by the Italian National Council for Researches, and based on a different approach, is, in general, confirmed by the results.  相似文献   

9.
Soft sediments make an important component of the subsurface lithology, especially in areas underlain by river/stream basins. Occupying a position directly above the bedrock up to the land surface, these soft sediments can range in thickness from few centimeters to hundreds of meters. They carry a special nuisance in seismic hazards, as they serve as a source of seismic amplification that may enhance the seismic shaking of many folds. Determination of the thickness of the soft sediments is therefore crucial in seismic hazard analysis. A number of studies in recent years have demonstrated that frequency and amplitude spectrum obtained from the noise measurements during the recording of natural seismicity can be used to obtain thickness of soft sediments covering the bedrock. Nakamura (1989) presented a technique to determine such spectrum using ratio of horizontal to vertical components of the Rayleigh waves. The present study is based on an extensive set of microtremor measurements carried out in the Islamabad city, Pakistan. Fundamental frequencies were obtained from weak motion sensors and Tromino Engy Plus instruments to show that the correlation is clearly valid for a wide range of sediment thickness. A simple formula was derived for the investigated area to determine directly the thickness of sediments from the main peaks in the H/V spectrum for seismometer and Tromino data separately. A comparison is made between sediment thicknesses derived from empirical relations developed in this study with those given in literature to demonstrate a positive correlation. The correlation of instrumental resonant frequencies with calculated resonant frequencies (theoretical) suggests that the relation derived from the noise measurements mostly depends on the velocity depth function of the shear wave. The fundamental frequency of the main peak of spectral ratio of H/V using the both instruments correlates well with the thickness of sediments at the site obtained from the borehole data. It is found out that there is a wide variation in soft-sediment thickness in the Islamabad area, but as a general rule, soft sediments are thicker adjacent to stream courses compared to the areas intervening the streams. The distribution of sediments in the studied area is illustrated by means of cross sections constructed from results of the microtremor analyses and available borehole data, which provides a visual distribution of the soft sediments underlying the Islamabad city.  相似文献   

10.
11.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   

12.
Models are presented which illustrate the various methods used for the determination of the thickness and nature of deep seismic boundaries according to the observed amplitude and frequency of subcritical reflected waves. From this study it becomes clear that the model which most nearly satisfies the observational requirements is one in which the boundaries are represented by a zone of thin diverse lamellae which produce localized velocity inversion.  相似文献   

13.
The working group on Test Regions for Evaluation of Methods for Seismic Hazard Assessment in Europe (TERESA), consisted of 15 members from 10 different European countries. Methods and experience gathered in these countries have been compared and discussed for two test areas in Europe: the Sannio-Matese region, Southern Italy, with high seismic activity, and the border region between Belgium, The Netherlands, and Federal Republic of Germany, with low activity.This paper summarizes the results for one of the test areas, Sannio-Matese. Most of the participants used statistical procedures to assess earthquake hazard, receiving results in terms of probability of occurrence for intensity as the ground-motion parameter. It was found that careful preparation of input data and parameters is the major influencing factor, therefore most of the efforts of the working group was devoted to this task.The scatter of the obtained results of the group is considerable, mainly because of the uncertainties in the data and the subjectiveness involved in the procedures. For better control of both factors, more objective methods have to be developed.  相似文献   

14.
15.
In relation to the assessment of earthquake-induced landslide hazard, this paper discusses general principles and describes implementation criteria for seismic hazard estimates in landslide-prone regions. These criteria were worked out during the preparation of a hazard map belonging to the official Italian geological cartography and they are proposed as guidelines for future compilation of similar maps. In the presented case study, we used a procedure for the assessment of seismic hazard impact on slope stability adopting Arias intensity Ia as seismic shaking parameter and critical acceleration a c as parameter representing slope strength to failures induced by seismic shaking. According to this procedure, after a preliminary comparison of estimated historical maximum values of Ia with values proposed in literature as landslide-triggering thresholds, a probabilistic approach, based on the Newmark’s model, is adopted: it allows to estimate the minimum critical acceleration a c required for a slope to keep under a prefixed value, the probability of failures induced by seismic shakings expected in a given time interval. In this way, one can prepare seismic hazard maps where seismic shaking is expressed in an indirect way through a parameter (the critical acceleration) representing the “strength” that seismic shakings mobilise in slope materials (strength demand) with a prefixed exceedance probability. This approach was applied to an area of Daunia (Apulia—southern Italy) affected by frequent landslide phenomena. The obtained results indicate that shakings with a significant slope destabilisation potential can be expected particularly in the north-western part of the area, which is exposed to the seismic activity of Apennine tectonic structures.  相似文献   

16.
The use of logic trees in probabilistic seismic hazard analyses often involves a large number of branches that reflect the uncertainty in the selection of different models and in the selection of the parameter values of each model. The sensitivity analysis, as proposed by Rabinowitz and Steinberg [Rabinowitz, N., Steinberg, D.M., 1991. Seismic hazard sensitivity analysis: a multi-parameter approach. Bull. Seismol. Soc. Am. 81, 796–817], is an efficient tool that allows the construction of logic trees focusing attention on the parameters that have greater impact on the hazard.In this paper the sensitivity analysis is performed in order to identify the parameters that have the largest influence on the Western Liguria (North Western Italy) seismic hazard. The analysis is conducted for six strategic sites following the multi-parameter approach developed by Rabinowitz and Steinberg [Rabinowitz, N., Steinberg, D.M., 1991. Seismic hazard sensitivity analysis: a multi-parameter approach. Bull. Seismol. Soc. Am. 81, 796–817] and accounts for both mean hazard values and hazard values corresponding to different percentiles (e.g., 16%-ile and 84%-ile). The results are assessed in terms of the expected PGA with a 10% probability of exceedance in 50 years for rock conditions and account for both the contribution from specific source zones using the Cornell approach [Cornell, C.A., 1968. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 58, 1583–1606] and the spatially smoothed seismicity [Frankel, A., 1995. Mapping seismic hazard in the Central and Eastern United States. Seismol. Res. Lett. 66, 8–21]. The influence of different procedures for calculating seismic hazard, seismic catalogues (epicentral parameters), source zone models, frequency–magnitude parameters, maximum earthquake magnitude values and attenuation relationships is considered. As a result, the sensitivity analysis allows us to identify the parameters with higher influence on the hazard. Only these parameters should be subjected to careful discussion or further research in order to reduce the uncertainty in the hazard while those with little or no effect can be excluded from subsequent logic-tree-based seismic hazard analyses.  相似文献   

17.
The inception and growth of the active Carpino-Le Piane Basin Fault System (CLPBFS; central-southern Apennines, Italy) was analysed with respect to the neighbouring Isernia and Surrounding (ISFS) and Boiano Basin (BBFS) extensional Fault Systems. 39Ar–40Ar dating showed that the BBFS was already active 649 ± 21 ka bp and that the ISFS was active at least 476 ±10 ka bp , whereas the activity of the CLPBFS started certainly later than 253 ± 22 ka bp , and very probably as recently as <28 ka bp . These ages, combined with structural data (geometry and kinematics of the fault systems), indicate that the inception and development of the CLPBFS could be strictly related to the stress changes caused by earthquakes occurring on the BBFS.  相似文献   

18.
19.
20.
Based on the data of consequences of the 9 January 1988 earthquake that hit Tirana city, a comparative study is made of these consequences with the seismic hazard assessment by microzoning studies finished on the eve of this earthquake. It is shown that the methodologies used to assess the seismic hazard by engineering geology, geophysical, instrumental and analytical methods, follows the same trends as the distribution of the consequences of this earthquake.Paper presented at the 21st General Assembly of the European Seismological Commission, Sofia, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号