首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Nonphysical pressure oscillations are observed in finite element calculations of Biot's poroelastic equations in low‐permeable media. These pressure oscillations may be understood as a failure of compatibility between the finite element spaces, rather than elastic locking. We present evidence to support this view by comparing and contrasting the pressure oscillations in low‐permeable porous media with those in low‐compressible porous media. As a consequence, it is possible to use established families of stable mixed elements as candidates for choosing finite element spaces for Biot's equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Partial melting of ultrahigh‐pressure (UHP) metamorphic rocks is common during collisional orogenesis and post‐collisional reworking, indicating that determining the timing and processes involved in this partial melting can provide insights into the tectonic evolution of collisional orogens. This study presents the results of a combined whole‐rock geochemical and zirconological study of migmatites from the Sulu orogen in eastern China. These data provide evidence of multiple episodes of crustal anatexis and geochemical differentiation within the UHP metamorphic rocks. The leucosomes contain higher concentrations of Ba and K and lower concentrations of the rare earth elements (REE), Th and Y, than associated melanosomes and granitic gneisses. The leucosomes also have homogenous Sr–Nd–O isotopic compositions that are similar to proximal (i.e. within the same outcrop) melanosomes, suggesting that the anatectic melts were generated by the partial melting of source rocks that are located within individual outcrops. The migmatites contain zircons with six different types of domains that can be categorized using differences in structures, trace element compositions, and U–Pb ages. Group I domains are relict magmatic zircons that yield middle Neoproterozoic U–Pb ages and contain high REE concentrations. Group II domains represent newly grown metamorphic zircons that formed at 230 ± 1 Ma during the collisional orogenesis. Groups III, IV, V, and VI zircons are newly grown anatectic zircons that formed at 222 ± 2 Ma, 215 ± 1 Ma, 177 ± 2 Ma, and 152 ± 2 Ma, respectively. The metamorphic zircons have higher Th/U and lower (Yb/Gd)N values, flat heavy REE (HREE) patterns with no significantly negative Eu anomalies relative to the anatectic zircons, which are characterized by low Th/U ratios, steep HREE patterns, and negative Eu anomalies. The first two episodes of crustal anatexis occurred during the Late Triassic at c. 222 Ma and c. 215 Ma as a result of phengite breakdown. The other two episodes of anatexis occurred during the Jurassic period at c. 177 Ma and c. 152 Ma and were associated with extensional collapse of the collision‐thickened orogen. The majority of Triassic anatectic zircons and all of the Jurassic zircons are located within the leucosomes, whereas the melanosomes are dominated by Triassic metamorphic zircons, suggesting that the leucosomes within the migmatites record more episodes of crustal anatexis. Both metamorphic and anatectic zircons have elevated εHf(t) values compared with relict magmatic zircon cores, suggesting that these zircons contain non‐zircon Hf derived from material with more radiogenic Hf isotope compositions. Therefore, the Sulu and Dabie orogens experienced different episodes of reworking during the exhumation and post‐collisional stages.  相似文献   

6.
Since the discovery of high‐pressure metamorphic minerals such as coesite and diamond (Xu et al., 1992), the exhumation mode and process of the Dabie ultrahigh‐high pressure (UHP) rocks had become hot topics. For the exhumation process of UHP rocks, several explanation models had been proposed, and the subduction tunnel mode (Warren et al., 2008) seemed to be recognized by most scholars. A low rheological zone formed along the subduction, and the deep subduction material was rapidly exhumated by buoyancy or tectonic stress. In the tunnel, the exhuming rock moved at the opposite direction of the subduction. Following this model, the Dabie UHP rock exhumation structure would generally tend to NW, and show a top to SE shear sense (Fig 1a, b). However, the existing structural observations indicate that the UHP rocks tend to be S‐SE with the top to NW shear sense (Faure et al., 2003). Therefore, the more detailly analysis of the exhumation structure in the UHP rocks, especially in the exhuming shear zone is very necessary.  相似文献   

7.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   

8.
The Zuccale fault is a gently east‐dipping normal fault exposed on Elba. Its displacement of 7–8 km occurred from the mid‐Miocene to the Early Pliocene and the fault has been exhumed from a depth of 3–6 km. A complex hydrofracture system exposed in the footwall block consists of three orthogonal vein sets: two vertical sets trending N–S and E–W and one sub‐horizontal. The veins show a crack‐and‐seal texture and mutually cross‐cut each other. Throughout the period when the Zuccale fault was active, the regional stress field was extensional with the minimum principal stress oriented E–W, consistent only with the N–S trending set of vertical hydrofractures. We attribute the three sets of orthogonal fractures beneath the low‐permeability phyllosilicate‐rich fault core to switches in the minimum compressive stress direction induced by cyclic build‐up and release of overpressure.  相似文献   

9.
The Mozambique Ocean closed as Gondwana formed. Its suture has been identified in Madagascar (Betsimisaraka suture), but its continuation, into India, is controversial. The Palghat‐Cauvery shear system appears an ideal candidate as it: (i) lies along strike of the Betsimisaraka suture in Gondwana; (ii) forms a high‐pressure granulite belt; and (iii) separates crustal domains with different geological histories. However, existing age constraints have been used to suggest that the structure is Archaean/Palaeoproterozoic. Here we date metamorphic zircons using secondary ion mass spectrometry (535.0 ± 4.9 Ma) and monazites using electron probe micro‐analysis (537 ± 9, 532 ± 8, 525 ± 10 Ma). No evidence for an earlier metamorphic event was found. The identification of Palghat‐Cauvery high‐pressure metamorphism as Cambrian, and recognition that it bounds crustal domains of contrasting origin, points to it being the southern continuation of the Betsimisaraka suture and southern margin of Neoproterozoic India.  相似文献   

10.
朱涛  马小溪 《地学前缘》2021,28(2):284-295
在已有模型的基础上,考虑岩石圈厚度和软流层横向黏度的变化,本文建立了更接近地球实际情形的地幔对流模型,然后重新推测了导致云南地区剪切波各向异性的软流层源的深度.结果 表明:岩石圈厚度和软流层横向黏度变化对云南地区的软流层各向异性源的深度及软流层的变形程度和机制具有重要影响;软流层各向异性对云南西南部区域、东部区域北纬2...  相似文献   

11.
Deep mantle plumes and associated increased geotherms are expected to cause an upward deflection of the lower–upper mantle boundary and an overall thinning of the mantle transition zone between about 410 and 660 km depth. We use subsequent forward modelling of mineral assemblages, seismic velocities, and receiver functions to explain the common paucity of such observations in receiver function data. In the lower mantle transition zone, large horizontal differences in seismic velocities may result from temperature‐dependent assemblage variations. At this depth, primitive mantle compositions are dominated by majoritic garnet at high temperatures. Associated seismic velocities are expected to be much lower than for ringwoodite‐rich assemblages at undisturbed thermal conditions. Neglecting this ultralow‐velocity zone at upwelling sites can cause a miscalculation of the lower–upper mantle boundary on the order of 20 km.  相似文献   

12.
Pressure–Temperature–time (P–Tt) estimates of the syn‐kinematic strain at the peak‐pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan‐de‐Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn‐kinematically in a shear zone indicating top‐to‐the‐N motion. By combining X‐ray mapping with multi‐equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–Tt estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.  相似文献   

13.
Structural, microstructural and petrological data have enabled determination of the mechanical and geochemical processes involved in dynamic weakening and fabric transposition along the margins of a granulite nappe [the Parry Sound domain (PSD)] during transport to mid‐crustal levels of the Grenville Orogen. The data establish a genetic link between outcrop‐scale structures in the southern PSD and the development of the underlying Twelve Mile Bay shear zone (TMBSZ). Following granulite facies metamorphism (~11 kbar/~850 °C) in the southern PSD, the emplacement of pegmatite dykes resulted in hydration reactions within adjacent wall rocks and the development of thin (<1 m) amphibolite facies (~6.5 kbar/~700 °C) shear zones. The shear zones exhibit bulk H2O and K2O enrichment and oxygen isotope values similar to the adjacent pegmatites, suggesting metasomatic alteration by pegmatite‐derived fluids. Phase‐equilibrium models indicate that the destabilization of the pre‐existing pyroxene and garnet‐bearing assemblages, as observed within discrete shear zones in the southern PSD and the TMBSZ, requires H2O‐saturated conditions at these (amphibolite facies) P–T conditions. The spacing between discrete shear zones and the depth of hydration into the adjacent wall rock are of comparable length‐scales (~metres), suggesting that this type of reworking process can be an effective means of hydrating kilometre‐scale areas of crust relatively rapidly. Furthermore, considering the well‐established effects of hydrous fluids on the creep strength of anhydrous minerals, a fracture‐initiated, localized hydration‐and‐shearing process may be an efficient mechanism for weakening strong, dry rocks (e.g. granulites) in the middle to lower orogenic crust.  相似文献   

14.
An integrated study of U–Pb ages and trace elements was carried out for titanite and zircon from ultrahigh‐pressure (UHP) metagranites in the Sulu orogen, east‐central China. The results provide constraints on the composition of metamorphic fluids during the exhumation of deeply subducted continental crust. Titanite has two domain types based on REE patterns and trace element variations, Ttn‐I and Ttn‐II respectively. These two domains show indistinguishable U–Pb ages of 232 ± 14 to 220 ± 8 Ma, in general agreement with anatectic zircon U–Pb ages of 223 ± 4 to 219 ± 2 Ma for the partial melting event during early exhumation. The Ttn‐I domains have significantly higher REE, Th, Ta and Sr, and higher Th/U ratios than the Ttn‐II domains, indicating that the two domains have grown from metamorphic fluids with different compositions. For the Ttn‐I domains, Zr‐in‐titanite thermometry yields high temperatures of 773–851 °C at 2.5 GPa, and petrographic observations reveal the presence of melt pseudomorphs. Thus, they are interpreted to have grown from hydrous melts in the early exhumation stage. In contrast, the Ttn‐II domains were texturally equilibrated with amphibolite facies minerals such as biotite and plagioclase and contain inclusions of plagioclase and quartz. The Zr‐in‐titanite thermometry yields lower temperatures of 627–685 °C at 1.0 GPa. In combination with their REE patterns, they are interpreted to have grown from aqueous solutions at amphibolite facies metamorphic conditions during further exhumation. The differences in Th and Sr contents are prominent between the Ttn‐I and Ttn‐II domains, signifying the compositional difference between the hydrous melts and aqueous solutions. Therefore, the polygenetic titanite in the UHP metamorphic rocks provides insights into the geochemical property of metamorphic fluids during the continental subduction‐zone processes.  相似文献   

15.
Several types of multiphase solid (MS) inclusions are identified in garnet from ultrahigh‐pressure (UHP) eclogite in the Dabie orogen. The mineralogy of MS inclusions ranges from pure K‐feldspar to pure quartz, with predominance of intermediate types consisting of K‐feldspar + quartz ± silicate (plagioclase or epidote) ± barite. The typical MS inclusions are usually surrounded with radial cracks in the host garnet, similar to where garnet contains relict coesite. Barite aggregates display significant heterogeneity in major element composition, with total contents of only 57–73% and highly variable SiO2 contents of 0.32–25.85% that are positively correlated with BaO and SO3 contents. The occurrence of MS inclusions provides petrographic evidence for partial melting in the UHP metamorphic rock. The occurrence of barite aggregates with variably high SiO2 contents suggests the coexistence of aqueous fluid with hydrous melt under HP eclogite facies conditions. Thus, local dehydration melting is inferred to take place inside the UHP metamorphic slice during continental collision. This is ascribed to phengite breakdown during ‘hot’ exhumation of the deeply subducted continental crust. As a consequence, the aqueous fluid is internally buffered in chemical composition and its local sink is a basic trigger to the partial melting during the continental subduction‐zone metamorphism.  相似文献   

16.
Metagranodiorite samples from the Brossasco‐Isasca Unit, Dora‐Maira Massif, western Alps, show pseudomorphous and coronitic textures where igneous minerals were partially replaced by ultra‐high pressure (UHP) metamorphic assemblages. The original magmatic paragenesis consisted of quartz, plagioclase, K‐feldspar, biotite and minor phases. During UHP metamorphism, the plagioclase (site P) was replaced by zoisite, jadeite, quartz, K‐feldspar and kyanite, and coronitic reactions developed between biotite and adjacent minerals. At the original igneous biotite–quartz contact (site A), a single corona of poorly zoned garnet is developed, whereas at the biotite–K‐feldspar (site B) and biotite–plagioclase (site C) contacts, composite coronas are formed. Integration of results from petrographic observations, calculations of mineral stoichiometry and thermodynamic calculations of mineral stability has allowed the determination of the metamorphic reactions involved and the estimation of the metamorphic conditions, which reached as high as 24 kbar and 650 °C. Accurate microanalysis by energy‐dispersive spectroscopy (EDS) and statistical analysis of the data allowed us to identify, for the first time in a natural Na‐pyroxene of metagranitoid rocks, the end‐member Ca‐Eskola.  相似文献   

17.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

18.
The ultrahigh‐pressure (UHP) eclogite in the Dabie orogen preserves petrological evidence for the existence of hydrous silicate melts that formed during continental subduction‐zone metamorphism. This is indicated by occurrence of multiphase solid (MS) inclusions in garnet that primarily consist of K‐feldspar + quartz ± epidote/allanite. All the MS inclusions are euhedral to subhedral in morphology and surrounded with radial cracks in the host garnet. Their trace element compositions were analysed by two different approaches of laser sampling. The mass budget method was used to estimate the trace element abundances of MS inclusions from their mixtures with the host garnet. The results are compared with the direct sampling of MS inclusions, providing a first‐order approximation to the trace element composition of MS inclusions. The MS inclusions exhibit consistent enrichment of LILE, Sr and Pb, but depletion of HFSE in the primitive mantle‐normalized spidergram. Such arc‐like patterns of trace element distribution are common for continental crustal rocks. The melts have variably high K, Rb and Sr abundances, suggesting that breakdown of phengite is a basic cause for partial melting of the UHP eclogite. These MS inclusions also exhibit consistently low HFSE and Y contents, suggesting partial melting of the eclogite in the stability fields of rutile and garnet. Consequently, the trace element composition of MS inclusions provides a proxy for that of hydrous silicate melts derived from dehydration melting of the UHP eclogite during continental collision.  相似文献   

19.
In the internal zone of the European Alps, late Carboniferous to Permian sediments have been detached from their basement (e.g. the Zone Houillère in the Briançonnais Zone). The Pinerolo Unit (Dora‐Maira Massif) is the deepest unit exposed in the stack of the Western Alps and is considered to be Carboniferous in age based on lithological considerations. Detrital zircon grains from the Pinerolo Unit and the Zone Houillère display similar age patterns, with the youngest and largest population being Carboniferous (340–330 Ma). The distribution of Carboniferous magmatism in the Alps and surrounding areas suggests that the detritus was transported from Maures‐Corsica and possibly from the Helvetic Zone into the Zone Houillère and the Pinerolo basin. Our results highlight the potential of detrital zircon geochronology for deciphering the sources of detrital material in meta‐sediments, even if they have been affected by metamorphic overprints.  相似文献   

20.
正Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understanding the remote deformational effects of the Eurasian plate collision and the migration track at the northern margin of the plateau.However,when and how the uplift occurred remains  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号