首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable carbon isotope data that span part of the last glacial–interglacial transition (ca. 14-9 ka 14C BP; ca. 15–11 ka cal. BP), and which derive from organ-specific plant macrofossils recovered from two lake sediment profiles in the UK and one in Norway, are compared. The recorded temporal variations show similar trends, which, over a millennial time-scale appear to parallel the main drift in δ18O as determined for the GRIP ice-core. It is postulated that some smaller scale variations in the δ13C profiles may reflect the shorter term oscillations in δ18O values evident in the GRIP record, although this is less certain. Overall, however, the results suggest that stable carbon isotope measurements based on organ-specific terrestrial plant macrofossils may provide (i) a means for establishing correlations between terrestrial successions and (ii) additional paleoenvironmental information, as the apparent ‘shadowing’ of the GRIP record indicates a common forcing mechanism for both Greenland δ18O and northwest European δ13C variations. From the evidence available we suggest that the recorded δ13C variations reflect fluctuations in air temperature and/or changes in water vapour pressure in the atmosphere. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Grain size and magnetic susceptibility measurements on samples from a typical loess–palaeosol sequence on the central Chinese Loess Plateau are used to reconstruct the Pleistocene East Asian monsoon climate. The coarse‐grained fraction, i.e. the weight percentage > 30 μm of the bulk grain‐size distribution, is used as a sensitive proxy index of the East Asia winter monsoon strength. On the basis of an absolute time‐scale, time‐series variations of this proxy show that winter monsoon strengths varied on millennial time‐scales during the periods 145–165, 240–280, 320–350, 390–440, 600–640, 860–890, 900–930 and 1330–1400 kyr BP. The wavelength of these climatic oscillations varied between 1.89 and 4.0 kyr, as is shown by spectral analysis using the multitaper method. Although numerical simulation experiments show that high frequencies also can arise from measurement errors in the grain‐size analysis, the frequencies prove to be sufficiently stable when the spectral analysis is repeated with a different number of tapers. For the time being, we do not correlate these climatic oscillations with palaeoclimatic records in the North Atlantic deep‐sea sediments because both time‐scales need to be further improved. Our data, however, certainly demonstrate that millennial‐scale East Asian winter monsoon variations in the last 1.4 million years can be detected from terrestrial loess records. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
6.
7.
The UK37′ index has proven to be a robust proxy to estimate past sea surface temperatures (SSTs) over a range of time scales, but like any other proxy, it has uncertainties. For instance, in reconstructions of the Last Glacial Maximum (LGM) in the northern North Atlantic, UK37′ indicates higher temperatures than those derived from foraminiferal proxies. Here we evaluate whether such warm glacial estimates are caused by the advection of reworked alkenones in ice‐rafted debris (IRD) to deep‐sea sediments. We have quantified both coccolith assemblages and alkenones in sediments from glaciogenic debris flows in the continental margins of the northern North Atlantic, and from a deep‐sea core from the Reykjanes Ridge. Certain debris flow deposits in the North Atlantic were generated by the presence of massive ice‐sheets in the past, and their associated ice streams. Such deposits are composed of the same materials that were present in the IRD at the time they were generated. We conclude that ice rafting from some locations was a transport pathway to the deep sea floor of reworked alkenones and pre‐Quaternary coccolith species during glacial stages, but that not all of the IRD contained alkenones, even when reworked coccoliths were present. We speculate that the ratio of reworked coccoliths to alkenone concentration might be useful to infer whether significant reworked alkenone inputs from IRD did occur at a particular site in the glacial North Atlantic. We also observe that alkenones in some of the debris flows contain a colder signal than estimated for LGM sediments in the northern North Atlantic. This is also clear in the deep‐sea core studied where the warmest intervals do not correspond to the intervals with large inputs of reworked coccoliths or IRD. We conclude that any possible bias to UK37′ estimates associated with reworked alkenones is not necessarily towards higher values, and that the high SST anomalies for the LGM are unlikely to be the result of a bias caused by IRD inputs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Highstands in the Marine Isotope Stage (MIS) 3 based on 14C dating in the Qinghai–Tibetan Plateau (QTP) are widely documented. Recent records from shoreline sediments dated using U‐series and/or optically stimulated luminescence (OSL), however, reveal that the highstands originally dated in MIS 3 should now be considered to fall in MIS 5. This paper provides new evidence from the interior of the QTP, based on the grain‐size from a continuous lake core in the Zabuye Salt Lake, to verify the MIS 5 highstand in the QTP. Grain‐size analysis of the core sediments also distinguishes two other highstands in MIS 3 and MIS 2, respectively. The MIS 5 highstand is considered as the maximum lake level since the Last Interglacial, as cored sediments contain very low values of Median Diameter (Md) during MIS 5. Compared with the discontinuous records from lake shorelines sediments, the grain‐size records from the continuous lake centre core sediments provide a more complete dataset to infer lake level variations, and make it possible to make wider palaeoclimatic and palaeoenvironmental interpretation. In the interior of the QTP, highstands might have continued into cold climate periods due to the reduced evaporation rates in the latter. The influence of the moisture‐bearing southerly‐shifted Westerly wind pathway may also have contributed to the highstands in the glacial period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Mertens, K. N., Dale, B., Ellegaard, M., Jansson, I.‐M., Godhe, A., Kremp, A. & Louwye, S. 2010: Process length variation in cysts of the dinoflagellate Protoceratium reticulatum, from surface sediments of the Baltic–Kattegat–Skagerrak estuarine system: a regional salinity proxy. Boreas, 10.1111/j.1502‐3885.2010.00193.x. ISSN 0300‐9483. Results are presented from a regional comparison of average process length variation in cysts of Protoceratium reticulatum and Lingulodinium polyedrum, extracted from surface sediments in the Skagerrak–Kattegat–Baltic estuarine system, with the environmental variables of seawater temperature and salinity. Although too few cysts of Lingulodinium polyedrum were recovered from the sediments to make reliable correlations, cysts of Protoceratium reticulatum were well represented, and average process length was correlated significantly with both salinity and temperature. Owing to dominant summer surface production, and regional covariation between salinity and density, we propose the use of the significant correlation with summer sea surface salinity (SSSsummer) by the equation SSSsummer=3.16 × average process length ?0.84 (R2=0.8). Application of this equation down‐core in Limfjord (northern Denmark) shows its usefulness as a regional palaeosalinity proxy.  相似文献   

10.
Three‐dimensional seismic data were used to infer how bottom currents control unidirectional channel migration. Bottom currents flowing towards the steep bank would deflect the upper part of sediment gravity flows at an orientation of 1° to 11° to the steep bank, yielding a helical flow circulation consisting of a faster near‐surface flow towards the steep bank and a slower basal return flow towards the gentle bank. This helical flow model is evidenced by the occurrence of bigger, muddier (suggested by low‐amplitude seismic reflections) lateral accretion deposits and gentle channel wall with downlap terminations on the gentle bank and by smaller, sandier (indicated by high‐amplitude seismic reflectors) channel fills and steep channel walls with truncation terminations on the steep bank. This helical flow circulation promotes asymmetrical depositional patterns with dipping accretion sets restricted to the gentle bank, which restricts the development of sinuosity and yields unidirectional channel migration. These results aid in obtaining a complete picture of flow processes and sedimentation in submarine channels.  相似文献   

11.
12.
Continental carbonates of Quaternary age in southern Italy commonly exhibit the facies of calcareous tufa, often reported as related to shallow aquifers fed by meteoric waters and to organic processes. A close spatial relationship exists between the mappable tufa deposits and major Quaternary extensional faults. With respect to the Ca‐Mg‐HCO3 composition of limestone aquifers’ springs, tufa‐depositing springs exhibit higher salinity and alkalinity, are slightly warmer, have lower pH and are enriched in SO4 and CO2. Their δ13C values are systematically positive and compatible with a deep‐seated carbon source. A clear input of soil‐derived organic carbon is indicated only for small, non‐mappable tufas deposited by perched springs. The dataset indicates that the large tufa deposits owe their origin to a supplementary source of CO2 advected by degassing through active faults, as a necessary prerequisite for inducing a rise of total dissolved salts and alkalinity. Meteoric waters that have come from a shallow aquifer are able to precipitate only limited amount of carbonates.  相似文献   

13.
Tephra provides regional chronostratigraphical marker horizons that can link different climate archives with highly needed accuracy and precision. The results presented in this work exemplify, however, that the intermittent storage of tephra in ice sheets and during its subsequent iceberg transport, especially during glacial stages, constitutes a potential source of serious error for the application of tephrochronology to Nordic Seas and North Atlantic sediment archives. The peak shard concentration of the rhyolitic component of the North Atlantic Ash Zone II (NAAZ‐II) tephra complex, often used to correlate marine and ice core records in Marine Isotope Stage (MIS) 3, is shown to lag the eruption event by ca. 100–400 years in some North Atlantic and Norwegian Sea cores. While still allowing for a correlation of archives on millennial timescales, this time delay in deposition is a major obstacle when addressing the lead–lag relationship on short timescales (years to centuries). A precise and accurate determination of lead–lag relationships between archives recording different parts of the climate system is crucial in order to test hypotheses about the processes leading to abrupt climate change and to evaluate results from climate models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Quantitative X‐ray diffraction analysis of the <2 mm sediment fraction was carried out on 1257 samples (from the seafloor and 16 cores) from the Iceland shelf west of 18° W. All but one core (B997‐347PC) were from transects along troughs on the NW to N‐central shelf, an area that in modern and historic times has been affected by drift ice. The paper focuses on the non‐clay mineralogy of the sediments (excluding calcite and volcanic glass). Quartz and potassium feldspars occupy similar positions in an R‐mode principal component analysis, and oligoclase feldspar tracks quartz; these minerals are used as a proxy for ice‐rafted detritus (IRD). Accordingly, the sum of these largely foreign minerals (Q&K) (to Icelandic bedrock) is used as a proxy for drift ice. A stacked, equi‐spaced 100 a record is developed which shows both low‐frequency trends and higher‐frequency events. The detrended stacked record compares well with the flux of quartz (mg cm?2 a?1) at MD99‐2269 off N Iceland. The multi‐taper method indicated that there are three significant frequencies at the 95% confidence level with periods of ca. 2500, 445 and 304 a. Regime shift analysis pinpoints intervals when there was a statistically significant shift in the average Q&K weight %, and identifies four IRD‐rich events separated by intervals with lower inputs. There is some association between peaks of IRD input, less dense surface waters (from δ18O data on planktonic foraminifera) and intervals of moraine building. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Wohlfarth, B., Alexanderson, H., Ampel, L., Bennike, O., Engels, S., Johnsen, T., Lundqvist, J. & Reimer, P. 2010: Pilgrimstad revisited – a multi‐proxy reconstruction of Early/Middle Weichselian climate and environment at a key site in central Sweden. Boreas, 10.1111/j.1502‐3885.2010.00192.x. ISSN 0300‐9483. The site Pilgrimstad in central Sweden has often been cited as a key locality for discussions of ice‐free/ice‐covered intervals during the Early and Middle Weichselian. Multi‐proxy investigations of a recently excavated section at Pilgrimstad now provide a revised picture of the climatic and environmental development between ~80 and 36 ka ago. The combination of sedimentology, geochemistry, OSL and 14C dating, and macrofossil, siliceous microfossil and chironomid analyses shows: (i) a lower succession of glaciofluvial/fluvial, lacustrine and glaciolacustrine sediments; (ii) an upper lacustrine sediment sequence; and (iii) Last Glacial Maximum till cover. Microfossils in the upper lacustrine sediments are initially characteristic for oligo‐ to mesotrophic lakes, and macrofossils indicate arctic/sub‐arctic environments and mean July temperatures >8 °C. These conditions were, however, followed by a return to a low‐nutrient lake and a cold and dry climate. The sequence contains several hiatuses, as shown by the often sharp contacts between individual units, which suggests that ice‐free intervals alternated with possible ice advances during certain parts of the Early and Middle Weichselian.  相似文献   

17.
18.
Increasing interest in global climate change has led to attempts to understand and quantify the relationship between chemical weathering processes and environmental conditions, especially climate. This interest necessitates the identification of new climate proxies for the reconstruction of two important Earth surface processes: physical erosion and chemical weathering. In this study, an AMS 14C‐dated 2.8‐m‐long sediment core, GH09B1, from Lake Gonghai in north‐central China was subjected to detailed geochemical analyses to evaluate the intensity of chemical weathering conditions in the catchment. Multivariate statistical analysis of major and trace elemental data of 139 subsamples revealed that the first principal component axis PCA1 explained ~53% of the variance in the assemblage of elements/oxides with significant positive correlations between PCA1 scores and the separation of mobile and soluble elements/oxides from the immobile and resistant elements/oxides, which is thus able to indicate the chemical weathering in the catchment. These results are supported by the down‐core trends of other major and trace elemental ratios of chemical weathering intensity as well as by pollen data from the same core. Variations in PCA1, chemical index of alteration (CIA), Rb/Sr ratio and other oxides ratios indicate stronger chemical weathering due to a wet climate during the Medieval Warm Period (MWP). However, the MWP was interrupted by an interval of relatively weaker chemical weathering conditions from AD 940–1070. Weak chemical weathering under a dry climate occurred during the Little Ice Age (LIA), and increased chemical weathering intensity during the Current Warm Period (CWP). Our proxy records of chemical weathering over the last millennium correlate well with the available proxy records of precipitation from Gonghai Lake as well as with the speleothem oxygen isotope record from Wanxiang Cave, but do not show a significant correlation with the temperature record in N China, suggesting that the chemical weathering intensity in the study area was mainly controlled by the amount of rainfall rather than by temperature. We conclude that high resolution lacustrine sediment geochemical parameters can be used as reliable proxies for climate variations at centennial‐decadal time scales.  相似文献   

19.
Cenomanian/Turonian boundary (upper Sarvak Formation) benthic foraminiferal assemblages were analyzed to reconstruct oxygen level, primary productivity, and water turbulence in the Izeh Zone, Zagros Basin. The interplay between environmental perturbations during the Oceanic Anoxic Event 2 (OAE2) and regional tectonic activities in the Zagros Basin resulted in formation of various benthic foraminiferal assemblages in the study section. The OAE2 interval at the region of study starts with extinction of rotaliporids at the onset of δ13C positive excursion (peak “a”), which is associated with population of infaunal benthic foraminifera (especially Bolivina alata). The following interval at the onset of Whiteinella archaeocretacea Biozone is characterized by the total absence of benthic taxa and dominance of planoheterohelicids (“Heterohelix shift”) in the black shale strata, indicating expansion of oxygen minimum zone and unhospitable conditions for both benthic and planktic foraminifera. The upper part of OAE2 interval (including δ13C peaks “b” and “c”) coincides with harbinger of Neo-Tethys closure in the Arabian Plate, causing a compressional tectonic regime, and creation of uplifted terrains in the basin. The relative sea level started to locally fall in this succession, which was accompanied by a better ventilation of seafloor, lower TOC contents, and reappearance of benthic foraminifera.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号