首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Zumaya section, northern Spain, is a suitable candidate to define the Global Stratotype Section and Point for the base of the Selandian Stage (Palaeocene) because of its excellent accessibility, exposure and stratigraphic continuity. Uncertainties exist, however, with regard to the stratigraphic horizon where to place the Danian/Selandian (D/S) boundary. Five potential stratigraphic horizons (HDS1 to HDS5) to define the D/S boundary have been identified at Zumaya, based on integrated stratigraphic studies that include quantitative planktic and benthic foraminiferal results, as well as δ13C isotopic and lithological data. Two of these horizons (HDS2 and HDS4) placed in Zone C26r appear to have particularly good potential for serving as the D/S boundary marker, because they may represent significant global palaeoceanographic, palaeoclimatic and eustatic events.  相似文献   

2.
Despite growing evidence for environmental oscillations during the last glacial–interglacial transition from high latitude, terrestrial sites of the North Pacific rim, oxygen-isotopic records of these oscillations remain sparse. The lack of data is due partially to the paucity of lakes that contain carbonate sediment suitable for oxygen-isotopic analysis. We report here the first record of oxygen-isotopic composition in diatom silica (δ18OSi) from a lake in that region. δ18OSi increases gradually from 19.0 to 23.5‰ between 12,340 and 11,000 14C yr B.P., reflecting marked climatic warming at the end of the last glaciation. Around 11,000 14C yr B.P., δ18OSi decreases by 1.7‰, suggesting a temperature decrease of 3.5–8.9 °C at the onset of the Younger Dryas (YD) in southwestern Alaska. Climatic recovery began ca. 10,740 14C yr B.P., as inferred from the increase of δ18OSi to a maximum of 23.9‰ near the end of the YD. Our data reveal that a YD climatic reversal in southwestern coastal areas of Alaska occurred, but the YD climate did not return to full-glacial conditions.  相似文献   

3.
Numerous studies have shown that precipitation isocapes drive δD and δ18O patterns in surficial waters and in terrestrial food webs. While the GNIP (Global Network for Isotopes in Precipitation) dataset provided a key foundation for linking precipitation-terrestrial isoscapes globally, it has insufficient spatial coverage in many countries like Mexico. To overcome this limitation, we hypothesized that shallow phreatic groundwaters in Mexico could be used as an isotopic integrator of long-term seasonally weighted precipitation inputs to the landscape to aid in calibrating spatial H and O isotope datasets for terrestrial, biological and hydrological research. Groundwater was sampled from 234 sites in Mexico at ~ 50 km latitudinal spacing to obtain high spatial resolution and country-wide coverage for the construction of a groundwater isoscape. Our data revealed that shallow groundwater infiltration in Mexico appears largely unaffected by evaporation and reflects seasonally weighted precipitation inputs. These precipitation inputs are primarily biased to summertime when highest rainfall occurs, but a small degree of post-precipitation evaporation revealed a lower d-excess zone that corresponded to the interior semi-arid ecozone. We developed a predictive general linear model (GLM) for hydrogen and oxygen isotopic spatial patterns in Mexican groundwater and then compared the results to a validation subset of our field data, as well external data reported in the literature. The GLM used elevation, latitude, drainage basin (Atlantic vs. Pacific), and rainfall as the most relevant predictive variables. The GLM explained 81% of the overall isotopic variance observed in groundwater, 68% of the variance within our validation subset, and 77% of the variance in the external data set. Our predictive GLM is sufficiently accurate to allow for future ecological, hydrological and forensic isoscape applications in Mexico, and may be an approach that is applicable to other countries and regions where GNIP stations are lacking.  相似文献   

4.
Oxygen isotope compositions of phosphate in tooth enamel from large mammals (i.e. horse and red deer) were measured to quantify past mean annual air temperatures and seasonal variations between 145 ka and 33 ka in eastern France. The method is based on interdependent relationships between the δ18O of apatite phosphate, environmental waters and air temperatures. Horse (Equus caballus germanicus) and red deer (Cervus elaphus) remains have δ18O values that range from 14.2‰ to 17.2‰, indicating mean air temperatures between 7°C and 13°C. Oxygen isotope time series obtained from two of the six horse teeth show a sinusoidal-like signal that could have been forced by temperature variations of seasonal origin. Intra-tooth oxygen isotope variations reveal that at 145 ka, winters were colder (? 7 ± 2°C) than at present (3 ± 1°C) while summer temperatures were similar. Winter temperatures mark a well-developed West–East thermal gradient in France of about ? 9°C, much stronger than the ?4°C difference recorded presently. Negative winter temperatures were likely responsible for the extent and duration of the snow cover, thus limiting the food resources available for large ungulates with repercussions for Neanderthal predators.  相似文献   

5.
6.
In an attempt to discriminate between tectonically induced sea-level changes and glacio-eustacy, the Ekklissia and Arakthos sections (Epirus, NW Greece) are examined, applying (dinocyst) palynology, sedimentology and magnetostratigraphy. The sections, located in the Pindos Foreland Basin, both comprise the transition from pelagic limestones to hemipelagic silty clays and turbidite sandstones, reflecting the onset of flysch sedimentation as a result of the Pindos thrust activity. Despite an overall tectonic overprint, relative changes of sea level can be reconstructed, using (i) continental/marine palynomorph ratios, (ii) relative abundance of inshore and offshore dinoflagellate cysts, and (iii) taxa indicative of relatively cold and warm sea-surface temperature, that can be calibrated against the Global Polarity Time Scale (GPTS). Increased fluxes of marginal marine and continental palynomorphs coincide with colder periods on a 'third-order' scale, which thus appear to be related to glacio-eustatic trends in sea-level. The larger scale is attributed to the increasing effect of tectonics and acts on a 'second-order scale'.  相似文献   

7.
《Sedimentology》2018,65(2):517-539
Enhanced aridification of Central Asia driven by the combined effects of orogenic surface uplift, Paratethys retreat, changes in atmospheric moisture transport and global cooling is one of the most prominent Cenozoic climate change events of the Northern Hemisphere. Deciphering regional long‐term patterns of Central Asian hydrology is, therefore, a key element in understanding the role of Northern Hemisphere mid‐latitude drying in the global hydrological system. This study characterizes long‐term palaeoenvironmental conditions between the late Oligocene and early Miocene in south‐eastern Kazakhstan based on stable isotopes, elemental geochemistry and laser ablation uranium–lead geochronology from alluvial, fluvial and pedogenic deposits. Sedimentary facies and geochemical weathering indices suggest an increased surface and groundwater discharge fed by orographically enhanced precipitation in the Tien Shan hinterland. In contrast, pedogenic stable isotope data and elevated rates of magnesium fixation in clay minerals mirror enhanced rates of evaporation in the vadose zone due to protracted aridification. This study posits that pronounced surface uplift of the Tien Shan Mountains during the Oligocene–Miocene transition promoted regionally increased orographic precipitation and the development of fluvial discharge systems.  相似文献   

8.
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from ice‐core water from the Amundsen–Scott South Pole Station. This isotopic reference material, designated as USGS49, was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity and measured by dual‐inlet isotope‐ratio mass spectrometry. The δ2H and δ18O values of USGS49 are ?394.7 ± 0.4 and ?50.55 ± 0.04 mUr (where mUr = 0.001 = ‰), respectively, relative to VSMOW, on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5 mUr. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material is intended as one of two isotopic reference waters for daily normalisation of stable hydrogen and oxygen isotopic analysis of water with an isotope‐ratio mass spectrometer or a laser absorption spectrometer. It is available by the case of 144 glass ampoules or as a set of sixteen glass ampoules containing 5 ml of water in each ampoule.  相似文献   

9.
10.
High‐precision correlation of palaeoclimatic and palaeoenvironmental records is crucial for testing hypotheses of synchronous change. Although radiocarbon is the traditional method for dating late Quaternary sedimentary sequences, particularly during the last glacial–interglacial transition (LGIT; 15–9 ka), there are inherent problems with the method, particularly during periods of climate change which are often accompanied by major perturbations in atmospheric radiocarbon content. An alternative method is the use of tephras that act as time‐parallel marker horizons. Within Europe, numerous volcanic centres are known to have erupted during the LGIT, providing considerable potential for high‐precision correlation independent of past radiocarbon fluctuations. Here we report the first identification of the Vedde Ash and Askja Tephra in Ireland, significantly extending the known provenance of these events. We have also identified two new horizons (the Roddans Port Tephras A and B) and tentatively recognise an additional horizon from Vallensgård Mose (Denmark) that provide crucial additional chronological control for the LGIT. Two phases of the Laacher See Tephra (LST) are reported, the lower Laacher See Tephra (LLST) and probably the C2 phase of the Middle Laacher See Tephra (MLST‐C2) indicating a more northeasterly distribution of this fan than reported previously. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This study presents the results of TOC/TN (C/N) ratio, δ13C and δ15N analyses of lake sedimentary organic matter (OM) from the Hedong section, western Guangdong Province in south China, with the objective to reveal the history of hydrological and ecological variations in the region influenced by both the Indian summer monsoon (ISM) and East Asian summer monsoon (EASM). Variations in δ13C and δ15N of sedimentary OM may be closely related to past climatic conditions, which results in variations in surface runoff, lake level, allochthonous and autochthonous sources of OM, and lake productivity. Based on the interpretation of these proxies, four periods, i.e. 4370–4100, 3700–2900, 2400–2100 and 1900–900 cal. a BP, are characterized by low lake level, weakened surface runoff and deteriorated status of terrestrial and aquatic ecosystems, whereas the periods 4100–3700, 2900–2400, 2100–1900 and 900–600 cal. a BP are dominated by high lake level, strengthened surface runoff, and flourishing terrestrial and aquatic plants. A remarkable positive correlation between the δ13C values of the section and the ENSO number record obtained from the tropical Pacific implies that the impact of the ISM is greater than that of the EASM in the study area. The abnormal correspondence between the δ13C and solar activity reconstructed from 10Be and 14C records in GRIP ice‐core occurred from 1500–800 and particularly from 4200–4000 cal. a BP, suggesting that these two cool and dry intervals may be caused by stronger volcanic activities that are recorded in the GISP2 and Dome C ice‐cores. This study reveals that changes in solar insolation and solar activity, as well as changes in oceanic–atmospheric circulation (e.g. the ENSO intensity) and intensive volcano eruptions may have exerted influence on late Holocene climate variability in the study area.  相似文献   

12.
13.
We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial–Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high‐resolution multi‐proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (down to 25 µm) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm?2 a?1), corresponded to major climatic phases (i.e. Oldest Dryas, Bølling–Allerød Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short‐lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high‐resolution studies based on multi‐proxy approaches and the development of appropriate modern analogues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This study explores the effects of cation composition on mass bias (i.e., the matrix effect), which is a major component of instrumental mass fractionation (IMF) in the microanalyses of δ13C and δ18O by SIMS in carbonates of the magnesite–siderite solid‐solution series (MgCO3–FeCO3). A suite of twelve calibration reference materials (RMs) was developed and documented (calibrated range: Fe# = 0.002–0.997, where Fe# = molar Fe/[Mg + Fe]), along with empirical expressions for regressing calibration data (affording residuals < 0.5‰ relative to certified reference material NIST‐19). The calibration curves of both isotope systems are non‐linear and have, over a 2‐year period, fallen into one of two distinct but largely self‐consistent shape categories (data from ten measurement sessions), despite adherence to well‐established analytical protocols for carbonate δ13C and δ18O analyses at WiscSIMS (CAMECA IMS 1280). Mass bias was consistently most sensitive to changes in composition near the magnesite end‐member (Fe# 0–0.2), deviating by up to 4.5‰ (δ13C) and 14‰ (δ18O) with increasing Fe content. The cause of variability in calibration curve shapes is not well understood at present and demonstrates the importance of having available a sufficient number of well‐characterised RMs so that potential complexities of curvature can be adequately delineated and accounted for on a session‐by‐session basis.  相似文献   

15.
Alluvial fans and shallow carbonate lakes interfered in the Teruel half‐graben during the Late Miocene–Pliocene. Tectonic influence is recorded in alluvial and lacustrine–palustrine successions, with long‐term climate changes being recorded in detail in the isotopic signatures of carbonates. Episodes of tectonic activity induced alluvial fan progradation and lake retraction in the whole basin. Three lacustrine stages have been identified, which support the idea that climate also exerted an important control on sedimentation. The transition between stages 1 and 2 occurred during a tectonically calm episode due to an increase in aridity in the Early Turolian; small fans with source areas next to the lake margin prograded, inducing lake‐shore retraction. The transition from stage 2 to 3 was caused by the superimposition of increasing tectonic activity and aridity effects. Our study demonstrates that discrimination of allogenic factors controlling sedimentation in continental closed basins is possible using sequence stratigraphy in combination with other techniques such as geochemistry of carbonates.  相似文献   

16.
17.
18.
A microstructural and metamorphic study of a naturally deformed medium‐ to high‐pressure granitic orthogneiss (Orlica–?nie?nik dome, Bohemian Massif) provides evidence of behaviour of the felsic crust during progressive burial along a subduction‐type apparent thermal gradient (~10 °C km?1). The granitic orthogneisses develops three distinct microstructural types, as follows: type I – augen orthogneiss, type II – banded orthogneiss and type III – mylonitic orthogneiss, each representing an evolutionary stage of a progressively deformed granite. Type I orthogneiss is composed of partially recrystallized K‐feldspar porphyroclasts surrounded by wide fronts of myrmekite, fully recrystallized quartz aggregates and interconnected monomineralic layers of recrystallized plagioclase. Compositional layering in the type II orthogneiss is defined by plagioclase‐ and K‐feldspar‐rich layers, both of which show an increasing proportion of interstitial minerals, as well as the deformation of recrystallized myrmekite fronts. Type III orthogneiss shows relicts of quartz and K‐feldspar ribbons preserved in a fine‐grained polymineralic matrix. All three types have the same assemblage (quartz + plagioclase + K‐feldspar + muscovite + biotite + garnet + sphene ± ilmenite), but show systematic variations in the composition of muscovite and garnet from types I to III. This is consistent with the equilibration of the three types at different positions along a prograde P?T path ranging from <15 kbar and <700 °C (type I orthogneiss) to 19–20 kbar and >700 °C (types II and III orthogneisses). The deformation types thus do not represent evolutionary stages of a highly partitioned deformation at constant P?T conditions, but reflect progressive formation during the burial of the continental crust. The microstructures of the type I and type II orthogneisses result from the dislocation creep of quartz and K‐feldspar whereas a grain boundary sliding‐dominated diffusion creep regime is the characteristic of the type III orthogneiss. Strain weakening related to the transition from type I to type II microstructures was enhanced by the recrystallization of wide myrmekite fronts, and plagioclase and quartz, and further weakening and strain localization in type III orthogneiss occurred via grain boundary sliding‐enhanced diffusion creep. The potential role of incipient melting in strain localization is discussed.  相似文献   

19.
The northern Wanganui Basin, New Zealand, is one of the key global sites for understanding marine cyclic sedimentation during the Quaternary. This paper presents the first evidence of marine cyclic sedimentation from its central-southern parts. Sedimentological, micropalaeontological and palynological analyses on a 280-m-deep borehole encountered units dating back to MIS 10. The sequence includes four marine cycles spanning MIS 9–5, which are overlain by terrestrial fluvial aggradation surfaces dating from MIS 4–2. Each marine unit represents a progressively shallowing depositional environment from the mid-shelf to coastal plain. This is overlain by a terrestrial sequence of lowstand fluvial terraces. Localized fault movements appear to have influenced the sedimentary character of the sequence during MIS 7a and 5e producing basement highs which provided protection to the shoreline. The cyclothems described in this paper now extend the already extensive, previously described record from MIS 17–10 to produce a combined eustatic record of Quaternary sea level change within the basin to MIS 5. They also provide an excellent example of the sedimentary response of a coastal basin to a progressive loss of sedimentation accommodation space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号