首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cretaceous–Palaeogene (K/Pg) boundary interval is often penetrated by burrows, which may obscure stratigraphic and micropalaeontological records, leading to misinterpretations of the sequence of events spanning the K/Pg boundary. Here, we assess the role of burrowing organisms in the redistribution of benthic foraminifera across the boundary at Bidart (France), and report a strong relationship between the behaviour represented by pre‐ and post‐K/Pg trace fossils and their benthic foraminiferal content. We further infer a brief interval of eutrophic conditions at the seafloor, as reported from other locations, which disappeared from the lowermost Danian stratigraphic record and is represented only inside post‐K/Pg trace fossils hosted in Cretaceous strata. The combined study of trace fossils and microfossils is a powerful tool in eco‐stratigraphy and event‐stratigraphy, and can yield important insights into the completeness of the K/Pg record, especially at locations such as Bidart where this interval has traditionally been assumed to be complete.  相似文献   

2.
We show crucial evidence for the Cretaceous–Palaeogene (K–Pg) boundary event recorded within a rare succession deposited in an inner‐platform lagoon on top of a Mesozoic, tropical, intra‐oceanic (western Tethys) Adriatic carbonate platform, which is exposed at Likva cove on the island of Bra? (Croatia). The last terminal Maastrichtian fossils appear within a distinct 10–12 cm thick event bed that is characterised by soft‐sediment bioturbation and rare shocked‐quartz grains, and is interpreted as a distal tsunamite. Directly overlying this is a 2 cm thick reddish‐brown clayey mudstone containing planktonic foraminifera typical of the basal Danian, and with elevated platinum‐group elements in chondritic proportions indicating a clear link to the Chicxulub asteroid impact. These results strongly support the first discovery of a “potential” K–Pg boundary tsunamite on the neighbouring island of Hvar, and these two complementary sections represent probably the most complete record of the event among known distal shallow‐marine successions.  相似文献   

3.
The La Popa Basin in north‐eastern Mexico features outstanding, continuous three‐dimensional exposures of the Cretaceous–Palaeogene boundary event deposit in shallow shelf environments pierced by salt stocks. In the area to the south‐east of the El Papalote diapir, the Cretaceous–Palaeogene deposit consists of two superimposed sedimentary units and erosively overlies upper Maastrichtian sand‐siltstones with soft‐sediment deformation and liquefaction structures. The basal unit 1 is an up to 8 m thick chaotic, carbonate‐rich bed that discontinuously fills incised gutters and channels. Besides abundant silicic and carbonate ejecta spherules from the Chicxulub impact, unit 1 includes large sandstone boulders and abundant shallow‐water debris (for example, mud clasts, algae, bivalve shells, gastropod shells and vertebrate remains). Unit 1 is conformably overlain by unit 2. Distal to the diapir, unit 2 consists of a centimetre to decimetre‐thick conglomeratic, coarse bioclast and spherule‐bearing sandstone bed. Closer to the diapir, unit 2 becomes a metre‐thick series of four to eight conglomeratic to fine‐grained graded sandstone beds rich in shell debris and ejecta spherules. Unit 2 is conformably overlain by structureless to parallel laminated sandstone beds that may mark the return to the pre‐event depositional regime. The sedimentary characteristics of the Cretaceous–Palaeogene deposit, including its erosive base, its sheet‐like geometry, the presence of multiple, graded beds, evidence for upper flow regime conditions and the absence of bioturbation, support an origin by a short‐term multiphase depositional event. The occurrence of soft‐sediment deformation structures (for example, liquefaction) below the Cretaceous–Palaeogene deposit suggests that earthquakes were the first to occur at La Popa. Then, shelf collapse and strong backflow from the first tsunami waves may have triggered erosion and deposition by violent ejecta‐rich hyperconcentrated density flows (unit 1). Subsequently, a series of concentrated density flows resulting from tsunami backwash surges may have deposited the multiple‐graded bedding structures of unit 2. The specific depositional sequence and the Fe‐Mg‐rich as well as Si‐K‐rich composition of the ejecta spherules both provide a critical link to the well‐known deep marine Cretaceous–Palaeogene boundary sites in the adjacent Burgos basin in north‐eastern Mexico. Moreover, the pulse‐like input of Chicxulub ejecta material at the base of the event deposit allows for correlation with other Cretaceous–Palaeogene boundary sites in the Gulf of Mexico and the Atlantic, as well as in Central and Northern America. The presence of diverse dinosaur and mosasur bones and teeth in the event deposit is the first observation of such remains together with Chicxulub ejecta material. These findings indicate that dinosaurs lived in the area during the latest Maastrichtian and suggest that the tsunami waves not only eroded deltas and estuaries but the coastal plain as well.  相似文献   

4.
5.
Section D at Meishan, Changxing County in the Zhejiang Province, China, has been extensively studied in various aspects of the stratigraphy during the past 20 years. It was ratified by the International Union of Geological Sciences (IUGS) as the Global Standard Stratotype Section and Point (GSSP) for the Permian–Triassic boundary in 2000, and is also a potential stratotype for the Wuchiapingian–Changhsingian boundary. However, the contact relationship between the Longtan (Wuchiapingian) and Changxing (Chainghsingian) formations has been a controversial subject for years. Recent studies on Section C, about 300 m west of Section D, at Meishan confirm a complete depositional succession around the boundary and suggest that the proposed boundary level, the FAD of Clarkina wangi within the lineage from C. longicuspidata to C. wangi, is consistent with the first appearance of the index Changhsingian fusulinid Palaeofusulina sinensis and tapashanitid ammonoids.  相似文献   

6.
Potential sources for alluvial gem corundum and zircon from the Rio Mayo area, near Mercaderes, Colombia are reviewed, based on U–Pb dating of syngenetic and protogenetic mineral inclusions in corundum samples and on a zircon megacryst. Corundum recovered from the region (approx. 99% sapphire, 1% ruby) commonly shows growth banding, includes colour change stones and exhibits overlaps in colour ranges and inclusion characteristics. This suggests a contiguous genetic suite. The U–Pb dating used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Because of the young ages and low-U contents of the dated zircons, the acquired data required a special statistical treatment. The results from zircon, fluorapatite and allanite-(Ce) inclusions provide a corundum crystallization age of 8 to 11 Ma, in relation to northern Andean Miocene uplift and magmatism. The zircon megacryst gave a younger crystallization age of c. 0.6 Ma, unrelated to the corundum genesis. Geochemical parameters (trace element and O isotope ranges) for corundum samples suggest a metamorphic/metasomatic origin. The age data rules out corundum genesis during the Late Cretaceous ophiolitic generation, but leave open possible later metasomatic interactions with this substrate. The Cr/Ga and Ga/Mg ratios and O isotope range for the corundum fall within the known limits for metasomatic, desilicated felsic/ultramafic ‘plumasitic’ associations, suggesting a possible parental source. Allanite, extremely rare as an inclusion in corundum elsewhere, may prove a characteristic inclusion for Rio Mayo corundum.  相似文献   

7.
8.
We present the first systematic exploration of earth tides-seismicity correlation in northwestern South America, with a special emphasis in Colombia. For this purpose, we use a dataset of ∼167,000 earthquakes, gathered by the Colombian Seismological Network between 1993 and 2017. Most of the events are intermediate-depth earthquakes from the Bucaramanga seismic nest and the Cauca seismic cluster. For this purpose, we implemented a novel approach for the calculation of tidal phases that considers the relative positions of the Earth-Moon-Sun system at the time of the events. After applying the standard Schuster test to the whole dataset and to several earthquake samples (classified by time, location, magnitude and depth), we found strong correlation anomalies with the diurnal and monthly components of the tide (global log(p) values around −7.0 for the diurnal constituent and −12.1 for the monthly constituent), especially for the intermediate depth events. These anomalies suggest that around 16% of the deep earthquakes in Colombia may be triggered by tides, especially when the monthly phase is between 350°-10°. We attribute our positive results, which favor the tidal-triggering hypothesis, in contrast to previous negative ones to: 1) the size of our dataset, and 2) the method we used to calculate tidal phases. Anyone willing to reproduce our results or to apply our methodology to custom datasets can use the public information system tQuakes that we developed for this work.  相似文献   

9.
Onshore–offshore seismic refraction profiling allows for the determination of crustal and mantle structures in the transition between continental and oceanic environments. Islands and narrow landmasses have the unique geometry of allowing for double-sided onshore–offshore experiments that favor the construction of composite “super-gathers” using the acquisition of onshore–offshore and ocean-bottom seismometer receiver gathers, land explosion shot gathers, and near-vertical incidence multichannel seismic (MCS) profiling. A number of sites at plate boundaries are amenable to the application of double-sided onshore–offshore imaging, including the Indo-Australian/Pacific transform boundary on South Island, New Zealand. By comparing the ratio of island width to mantle refraction (Pn) “maximum” crossover distance, using nondimensional distances, we provide an indicator of raypath “coverage” for crustal illumination. Islands or narrow land masses whose widths are less than twice their maximum crossover distance are candidates for double-sided onshore–offshore experiments. The SIGHT (South Island GeopHysical invesTigation) experiment in New Zealand is located where the width of South Island is sufficiently narrow with respect to its crustal thickness that a double-sided onshore–offshore experiment allows for complete crustal imaging of the associated plate boundary.  相似文献   

10.
Marine and non-marine facies of the Permian–Triassic boundary stratigraphic set (PTBST) are well developed in South China. Palynological assemblages enable subdivision and correlation of the Permian–Triassic boundary (PTB) rocks. Three palynological assemblages are recognized across the PTBST in two terrestrial PTB sections in western Guizhou and eastern Yunnan, South China. Assemblage 1 (Xuanwei Formation) is a Late Permian palynological assemblage dominated by ferns and pteridosperms, with minor gymnosperms. Most taxa are typical long-ranging Paleozoic forms, but the appearance of Lueckisporites confirms a Late Permian age for this assemblage. Assemblage 2 (PTBST) is marked by an abrupt decrease in palynomorph abundance and diversity, and thriving fungal/algal(?) spores. Assemblage 2 is still dominated by ferns and pteridosperms, with a few gymnosperms, but is characterized by a mixed palynoflora containing both Late Permian and Early Triassic elements. Most taxa are typical Late Permian ones also found in Assemblage 1, however, some taxa of Early Triassic aspect, e.g. Lundbladispora and Taeniaesporites, appeared for the first time. In Assemblage 3 (top Xuanwei Formation and Kayitou Formation), the proportion of gymnosperm pollen increases rapidly, exceeding that of ferns and pteridosperms, but the abundance of palynomorphs is still low. Typical Early Triassic taxa (such as Lundbladispora, Aratrisporites and Taeniaesporites) are present in greater abundance and confirms an Early Triassic age for this assemblage.  相似文献   

11.
Contractional structures (large anticlines and synclines, reverse faults and inverted centres of deposition) of assumed Late Cretaceous–Cenozoic age are common in Cretaceous–Tertiary basins of the northwestern European margin. The similarities in style, orientation and timing of these structures are striking. The present detailed analysis of one anticline (the Ormen Lange Dome) of the mid-Norwegian continental shelf indicates that the total contraction is moderate (less than 2–3%), and that the analysed anticline has been growing almost continuously since its initiation in Eocene till Present. Inversion in the Barents Sea started already in the Late Cretaceous. This episode is suggested to be related to far-field effects of active plate-margin processes, and transfer of stresses across the plate as a consequence of the sub Hercynian and Paleocene ‘Laramide' event of the Alpine Orogeny. The development of co-axial structures was facilitated by stress focusing along pre-existing, high-relief N–S- and NE–SW-trending fault complexes. Far-field plate tectonic stresses originating mainly from the Alpine Orogeny seem to have been the most important cause of contractional deformation on the NW European shelf. In addition, ridge push from the North Atlantic spreading may have contributed significantly, particularly during the Neogene.  相似文献   

12.
Benthic foraminiferal assemblages, in contrast to planktic foraminifera, generally did not suffer mass extinctions at the Cretaceous/Palaeogene (K/P) boundary; extinctions were fewer in deeper water. However, the outer shelf, upper bathyal section at Aïn Settara, Tunisia, records a dramatic change in the structure of benthic foraminiferal assemblages across the K/P boundary. At the level of extinction of planktic assemblages and enrichment in Ir and other geochemical anomalies, highly diversified, low-dominance Upper Maastrichtian assemblages with infaunal and epifaunal morphogroups were suddenly replaced by taxonomically impoverished assemblages, strongly dominated by epifaunal morphogroups. This extinction or temporary emigration of most infaunal morphogroups is interpreted to be the result of a sudden breakdown in food supply. This, in turn, is the consequence of a sudden collapse in primary productivity, probably resulting from the impact of the K/P asteroid.  相似文献   

13.
The Ediacaran–Cambrian transition is a critical interval marking drastic biological, oceanic and geochemical co‐evolutions in geological history, but it is poorly constrained geochronologically in South China. We here present two new sets of SIMS U–Pb zircon ages from Ediacaran–Cambrian boundary strata (Dengying, Liuchapo and Niutitang formations) deposited in the slope–basin environments of carbonate platforms. Two weighted‐mean U–Pb ages of 542.1 ± 5.0 Ma and 542.6 ± 3.7 Ma in the basal and mid‐upper Liuchapo Formation, respectively, in slope and basinal settings provide the first direct age set for the Ediacaran–Cambrian boundary in South China. Another two U–Pb ages of 524.2 ± 5.1 Ma and 522.3 ± 3.7 Ma from the base of the overlying Niutitang Formation indicate that this widespread unit in South China was deposited about 20 Ma after the onset of the Cambrian.  相似文献   

14.
Knowledge of the Cretaceous–Tertiary history of upper crustal shortening and magmatism in Tibet is fundamental to placing constraints on when and how the Tibetan plateau formed. In the Lhasa terrane of southern Tibet, the widely exposed angular unconformity beneath uppermost Cretaceous–lower Tertiary volcanic-bearing strata of the Linzizong Formation provides an excellent geologic and time marker to distinguish between deformation that occurred before vs. during the Indo-Asian collision. In the Linzhou area, located  30 km north of the city of Lhasa, a > 3-km-thick section of the Linzizong Formation lies unconformably on Cretaceous and older rocks that were shortened by both northward- and southward-verging structures during the Late Cretaceous. The Linzizong Formation dips northward in the footwall of a north-dipping thrust system that involves Triassic–Jurassic strata and a granite intrusion in the hanging wall. U–Pb zircon geochronologic studies show that the Linzizong Formation ranges in age from 69 Ma to at least 47 Ma and that the hanging wall granite intrusion crystallized at  52 Ma, coeval with dike emplacement into footwall Cretaceous strata. 40Ar/39Ar thermochronologic studies suggest slow cooling of the granite between 49 and 42 Ma, followed by an episode of accelerated cooling to upper crustal levels beginning at  42 Ma. The onset of rapid cooling was coeval with the cessation of voluminous arc magmatism in southern Tibet and is interpreted be a consequence of either (1) Tertiary thrusting in this region or (2) regional rock uplift and erosion following removal of overthickened Gangdese arc lower crust and upper mantle or break-off of the Neo-Tethyan oceanic slab.  相似文献   

15.
Ocean Drilling Program hole 504B revealed an ocean crust hydrothermal sulphur anomaly on the dyke–lava transition, with implications for global sulphur sinks. Here we confirm the presence of the anomaly sporadically along 7.5 km of dyke–basalt contact on the Macquarie Ridge at Macquarie Island, a 39–9.7 Ma slow‐spreading setting. Background contact‐zone pyrite S contents average 1845 p.p.m. across ~50 m. However, zones of small‐scale brittle faulting that commonly occur on and above the dyke–basalt contact average between 5000 and 11 000 p.p.m. S (20–30 m widths). These consist of steep ridge‐parallel faults and fault splays on the contact, overlain by up to 50 m of linked pyritic fault trellis. The contact zone faults are haloed by disseminated pyrite–chlorite, cross‐cut by quartz–chlorite–sphalerite and epidote‐cemented breccias, containing evidence of turbulent flow. The structural control on sulphur deposition is attributed to the active extensional slow spreading setting. With increasing extension, diffuse mixing across the contact was replaced by channellized flow and dynamic mixing in fault arrays. The magnitude of the dyke–lava transition sulphur sink must be reassessed to take account of this heterogeneity.  相似文献   

16.
17.
The Ilchulbong tuff cone, Cheju Island, South Korea   总被引:3,自引:0,他引:3  
The Ilchulbong mount of Cheju Island, South Korea, is an emergent tuff cone of middle Pleistocene age formed by eruption of a vesiculating basaltic magma into shallow seawater. A sedimentological study reveals that the cone sequence can be represented by nine sedimentary facies that are grouped into four facies associations. Facies association I represents steep strata near the crater rim composed mostly of crudely and evenly bedded lapilli tuff and minor inversely graded lapilli tuff. These facies suggest fall-out from tephra finger jets and occasional grain flows, respectively. Facies association II represents flank or base-of-slope deposits composed of lenticular and hummocky beds of massive or backset-stacked deposits intercalated between crudely to thinly stratified lapilli tuffs. They suggest occasional resedimentation of tephra by debris flows and slides during the eruption. Facies association III comprises thin, gently dipping marginal strata, composed of thinly stratified lapilli tuff and tuff. This association results from pyroclastic surges and cosurge falls associated with occasional large-scale jets. Facies association IV comprises a reworked sequence of massive, inversely graded and cross-bedded (gravelly) sandstones. These facies represent post-eruptive reworking of tephra by debris and stream flows. The facies associations suggest that the Ilchulbong tuff cone grew by an alternation of vertical and lateral accumulation. The vertical buildup was accomplished by plastering of wet tephra finger jets. This resulted in oversteepening and periodic failure of the deposits, in which resedimentation contributed to the lateral growth. After the eruption ceased, the cone underwent subaerial erosion and faulting of intracrater deposits. A volcaniclastic apron accumulated with erosion of the original tuff cone; the faulting was caused by subsidence of the subvolcanic basement within the crater.  相似文献   

18.
The Precambrian/Cambrian (PC/C) boundary is one of the most important intervals for the evolution of life. However, the scarcity of well-preserved outcrops across the boundary leaves an obstacle in decoding surface environmental changes and patterns of biological evolution.In south China, strata through the PC/C boundary are almost continuously exposed and contain many fossils, suitable for study of environmental and biological change across the PC/C boundary. We undertook deep drilling at four sites in the Three Gorges area to obtain continuous and fresh samples without surface alteration and oxidation. 87Sr/86Sr ratios of the fresh carbonate rocks, selected based on microscopic observation and geochemical signatures of Mn/Sr and Rb/Sr ratios, aluminum and silica contents, and δ13C and δ18O values, were measured with multiple collector-inductively coupled plasma–mass spectrometric techniques.The chemostratigraphy of 87Sr/86Sr ratios of the drilled samples displays a smooth curve and a large positive anomaly just below the PC/C boundary between the upper part of Baimatuo Member of the Dengying Formation and the lower part of the Yanjiahe Formation. The combination of chemostratigraphies of δ13C and 87Sr/86Sr indicates that the 87Sr/86Sr excursions preceded the δ13C negative excursion, and suggests that global regression or formation of the Gondwana supercontinent, possibly together with a high atmospheric pCO2, caused biological depression.  相似文献   

19.
One hundred years ago, the discovery of fresh‐looking, red, hairy skin and huge piles of dung of an extinct animal caused a media storm. The remains were found jumbled with human bones and tools on the floor of a cave near the southern tip of South America. Were the huge, cumbersome, hamster‐like creatures known as ground sloths still roaming the remote forests?  相似文献   

20.
Mexico is usually considered to have formed the western end of the Tethys during Late Jurassic and Early Cretaceous times. The circumstances of the opening of the Gulf of Mexico Basin towards the Tethys and the exact stratigraphic timing, however, are not clear. Four sections covering this time interval, located in northeastern Mexico, have been measured and sampled in detail, in order to clarify their stratigraphic position during the Late Jurassic to Early Cretaceous time interval and the paleogeographic and oceanographic changes that accompanied this opening. Our studies include microfacies, micro- and macropaleontology, whole rock and clay-mineral x-ray diffraction and stable isotopes analyses. Our data indicate that the Jurassic-Cretaceous boundary, as defined by the Lyon-Neuchâtel Colloquium of 1973, cannot be determined precisely in northeastern Mexico due to the near-absence of calpionellids and endemism of ammonite taxa. In the lower and upper Berriasian sediments, we detected Mediterranean ammonite taxa so far unknown from Mexico, corresponding to the appearance of typical calpionellid-rich facies. These faunas allow direct biostratigraphic correlation with European ammonite and calpionellid zones.We propose that a major oceanographic change occurred in the upper part of calpionellid Zone B of the Early Berriasian. At this time, sediments in northeastern Mexico present increasingly pelagic facies, a dramatic appearance of Tethyan microfossils (calpionellids) and ammonites, changes in stable isotopic values, whole rock and clay-mineral mineralogy. We suggest that these changes are due to a global sea-level rise that connected directly northeastern Mexico to the European Tethys and ended the endemic, semi-restricted and anoxic environment of the Late Jurassic La Casita and equivalent La Caja and La Pimienta Formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号