首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We study central collisions between millimeter-sized dust projectiles and centimeter-sized dust targets in impact experiments. Target and projectile are dust aggregates consisting of micrometer-sized SiO2 particles. Collision velocities range up to 25 m/s. The general outcome of a collision strongly depends on the impact velocity. For collisions below 13 m/s rebound and a small degree of fragmentation occur. However, at higher collision velocities up to 25 m/s approximately 50% of the mass of the projectile rigidly sticks to the target after the collision. Thus, net growth of a body is possible in high speed collisions. This supports the idea that planetesimal formation via collisional growth is a viable mechanism at higher impact velocities. Within our set of parameters the experiments even suggest that higher impact velocities might be preferable for growth in collisions between dusty bodies. For the highest impact velocities most of the ejecta is within small dust aggregates about 500 μm in size. In detail the size distribution of ejected dust aggregates is flat for very small particles smaller than 500 μm and follows a power law for larger ejected dust aggregates with a power of −5.6±0.2. There is a sharp upper cut-off at about 1 mm in size with only a few particles being slightly larger. The ejection angle is smaller than 3° with respect to the target surface. These fast ejecta move with 40±10% of the impact velocity.  相似文献   

2.
E. Beitz  C. Güttler  R. Weidling  J. Blum 《Icarus》2012,218(1):701-706
The formation of planetesimals in the early Solar System is hardly understood, and in particular the growth of dust aggregates above millimeter sizes has recently turned out to be a difficult task in our understanding (Zsom, A., Ormel, C.W., Güttler, C., Blum, J., Dullemond, C.P. [2010]. Astron. Astrophys., 513, A57). Laboratory experiments have shown that dust aggregates of these sizes stick to one another only at unreasonably low velocities. However, in the protoplanetary disk, millimeter-sized particles are known to have been ubiquitous. One can find relics of them in the form of solid chondrules as the main constituent of chondrites. Most of these chondrules were found to feature a fine-grained rim, which is hypothesized to have formed from accreting dust grains in the solar nebula. To study the influence of these dust-coated chondrules on the formation of chondrites and possibly planetesimals, we conducted collision experiments between millimeter-sized, dust-coated chondrule analogs at velocities of a few cm s?1. For 2 and 3 mm diameter chondrule analogs covered by dusty rims of a volume filling factor of 0.18 and 0.35–0.58, we found sticking velocities of a few cm s?1. This velocity is higher than the sticking velocity of dust aggregates of the same size. We therefore conclude that chondrules may be an important step towards a deeper understanding of the collisional growth of larger bodies. Moreover, we analyzed the collision behavior in an ensemble of dust aggregates and non-coated chondrule analogs. While neither the dust aggregates nor the solid chondrule analogs show sticking in collisions among their species, we found an enhanced sicking efficiency in collisions between the two constituents, which leads us to the conjecture that chondrules might act as “catalyzers” for the growth of larger bodies in the young Solar System.  相似文献   

3.
In this paper, the author proposes a formation scenario of dwarf spheroidal galaxies (dSphs); part of dSphs form as a result of collision of dark matter (DM) halos which retain ISM (interstellar medium). First of all, a primordial dSph forms compact when collision of DM halos occurs. After the collision, the primordial dSph leaves a mass-radius relation among old stellar systems. This intermediate evolutionary phase finishes when the galactic wind occurs. Finally, it is re-virialized. Once this scenario is adopted, we explain the reason why large M/L (mass-to-light ratio) is a result of galactic wind. Then, we conclude it is possible for part of dSphs to be remnants of DM halo collisions.  相似文献   

4.
Studying the origin and evolution of the Solar system is among the fundamental problems of modern natural science. This problem is interdisciplinary and requires the development of mathematical models for the physical structure and evolution of a gas–dust accretion disk from the initial stages of its formation to the formation of a planetary system. One of the key problems is the formation and growth of bodies in a protoplanetary disk, the basis for which is a study of the collisional processes of the solidbody component. We have performed a parametric analysis of the cluster–cluster collision processes occurring in a protoplanetary disk within the model of permeable particles being developed by us. The outcome of such collisions is shown to be affected significantly by the topological properties of colliding dust clusters with a fractal internal structure. The results of our parametric analysis show that for sufficiently “dense” fractal dust clusters, at low relative collision velocities, there exists a range in which the colliding clusters bounce. At the same time, for “porous” fractal clusters the bounce is impossible for any sets of collision parameters. As the relative collision velocities increase, the cluster coalescence processes begin to dominate due to a rearrangement of the fractal structure in the contact zone. However, as the kinetic energy of collisions increases further, a critical threshold is reached beyond which the collision energy exceeds the particle binding energy in clusters and the fractal dust cluster destruction processes are switched on during collisions. Thus, our parametric analysis imposes quite definite constraints on the dynamics and chronology of the evolution processes during the formation of primordial solid bodies and planetesimals. The proposed approach and the results obtained are fairly realistic and open prospects for more comprehensive model studies of the initial evolutionary phase of a protoplanetary disk.  相似文献   

5.
Raine Karjalainen 《Icarus》2007,189(2):523-537
Ring particle aggregates are formed in the outer parts of Saturn's main rings. We study how collisions between aggregates can lead to destruction or coalescence of these aggregates, with local N-body simulations taking into account the dissipative impacts and gravitational forces between particles. Impacts of aggregates with different mass ratios are studied, as well as aggregates that consist of particles with different physical properties. We find that the outcome of the collision is very sensitive to the shape of the aggregate, in the sense that more elongated aggregates are more prone to be destroyed. We were interested in testing the accretion criterion Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171] used in their F ring simulations, according to which accretion requires that the masses of the colliding bodies differ at least by a factor of 100. We confirm that such a critical mass ratio exists. In particular, simulations indicate that the exact critical mass ratio depends on the internal density and elasticity of particles, and the distance from the planet. The zone of transition, defined by the distance where individual particles or small aggregates first start to stick on the larger aggregate, and by the distance where two similar sized aggregates on the average eventually coalesce is only about 5000 km wide, if fixed particle properties are used. The rotational state of the aggregates that form via aggregate collision rapidly reaches synchronous rotation, similarly to the aggregates that form via gradual growth.  相似文献   

6.
R. Weidling  C. Güttler  J. Blum 《Icarus》2012,218(1):688-700
Over the past years the processes involved in the growth of planetesimals have extensively been studied in the laboratory. Based on these experiments, a dust-aggregate collision model was developed upon which computer simulations were based to evaluate how big protoplanetary dust aggregates can grow and to analyze which kinds of collisions are relevant in the solar nebula and are worth further studies in the laboratory. The sticking threshold velocity of millimeter-sized dust aggregates is one such critical value that have so far only theoretically been derived, as the relevant velocities could not be reached in the laboratory. We developed a microgravity experiment that allows us for the first time to study free collisions of mm-sized dust aggregates down to velocities of ~0.1 cm s?1 to assess this part of the protoplanetary dust evolution model. Here, we present the results of 125 free collisions between dust aggregates of 0.5–2 mm diameter. Seven collisions with velocities between 0.2 and 3 cm s?1 led to sticking, suggesting a transition from perfect sticking to perfect bouncing with a certain sticking probability instead of a sharp velocity threshold. We developed a model to explain the physical processes involved in dust-aggregate sticking, derived dynamical material properties of the dust aggregates from the results of the collisions, and deduced the velocity below which dust aggregates always stick. For millimeter-sized porous dust aggregates this velocity is 8 × 10?5 m s?1.  相似文献   

7.
S.J. Weidenschilling 《Icarus》2002,160(1):212-215
The observed transneptunian binaries, with components of comparable mass and large separations, cannot be the result of collisions in the present dynamical environment of the Kuiper belt. They could be produced by collision of two planetesimals within the sphere of influence of a third body during low-velocity accretion in the solar nebula. Thus, they are primordial.  相似文献   

8.
A two-dimensional hydrodynamic code has been developed for numerical studies of stellar collisions. The motivation for the study has been the suggestion by Colgate that collisions among stars in a dense galactic core can lead to growth of stellar masses by coalescence and thus to an enhanced rate of supernova activity. The specific results reported here refer to head-on collisions between identical polytropes of index 3 having solar mass and radius. If the polytropes were initially at rest at infinity, then about five percent of the combined mass is lost by ejection following collision. The volatilized mass fraction rises to about 18% for an initial relative collision velocity of 1000 km s–1 at infinite separation, and to about 60% for the 2000 km s–1 case. Since the initial kinetic and gravitational energies balance for a relative velocity of 1512 km s–1 at infinity, it may be seen that net coalescence persists to velocities somewhat in excess of this figure. Mass ejection takes place in two ways simultaneously: (1) by a rapid sideward expulsion of fluid in a massive lateral sheet normal to the collision axis, and (2) as a result of two recoil shocks which lead momentum flows backwards along this axis. The lateral effect has similarities to the expansion of gas into a vacuum; that is, shocks are not involved. However, the ejection of material from the rear colliding hemisphere due to the recoil shocks predominates at low collision velocities. As the velocity increases, both effects strengthen, but the lateral expulsion intensifies more rapidly than the recoil shocks.  相似文献   

9.
More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can-for the first time-be self-consistently and reliably modeled. In this article, the emergent collision model for protoplanetery dust aggregates, as well as the numerical model for the evolution of dust aggregates in protoplanetary disks, is reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems unlikely, implying that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals.  相似文献   

10.
Jens Teiser  Markus Küpper 《Icarus》2011,215(2):596-598
We have examined the influence of impact angle in collisions between small dust aggregates and larger dust targets through laboratory experiments. Targets consisted of μm-sized quartz dust and had a porosity of about 67%; the projectiles, between 1 and 5 mm in diameter, were slightly more compact (64% porosity). The collision velocity was centered at 20 m/s and impact angles range from 0° to 45°. At a given impact angle, the target gained mass for projectiles smaller than a threshold size, which decreases with increasing angle from about 3 mm to 1 mm. The fact that growth is possible up to the largest angles studied supports the idea of planetesimal formation by sweep-up of small dust aggregates.  相似文献   

11.
On the Collision Nature of Two Coronal Mass Ejections: A Review   总被引:1,自引:0,他引:1  
Observational and numerical studies have shown that the kinematic characteristics of two or more coronal mass ejections (CMEs) may change significantly after a CME collision. The collision of CMEs can have a different nature, i.e. inelastic, elastic, and superelastic processes, depending on their initial kinematic characteristics. In this article, we first review the existing definitions of collision types including Newton’s classical definition, the energy definition, Poisson’s definition, and Stronge’s definition, of which the first two were used in the studies of CME–CME collisions. Then, we review the recent research progresses on the nature of CME–CME collisions with the focus on which CME kinematic properties affect the collision nature. It is shown that observational analysis and numerical simulations can both yield an inelastic, perfectly inelastic, merging-like collision, or a high possibility of a superelastic collision. Meanwhile, previous studies based on a 3D collision picture suggested that a low approaching speed of two CMEs is favorable for a superelastic nature. Since CMEs are an expanding magnetized plasma structure, the CME collision process is quite complex, and we discuss this complexity. Moreover, the models used in both observational and numerical studies contain many limitations. All of the previous studies on collisions have not shown the separation of two colliding CMEs after a collision. Therefore the collision between CMEs cannot be considered as an ideal process in the context of a classical Newtonian definition. In addition, many factors are not considered in either observational analysis or numerical studies, e.g. CME-driven shocks and magnetic reconnections. Owing to the complexity of the CME collision process, a more detailed and in-depth observational analysis and simulation work are needed to fully understand the CME collision process.  相似文献   

12.
J. Lasue  R. Botet  E. Hadamcik 《Icarus》2009,203(2):599-609
A new model for the aggregation of cometesimals in the primordial solar nebula is proposed. The simulation of the aggregation takes into account disruptive and sticking effects of impacts on the aggregates properties together with the temporal evolution of cohesive strength during accretion due to sintering processes. Different regimes of aggregation are obtained depending on the value of the homogeneity exponent, μ, that indicates the fraction of kinetic energy available for cohesive energy dissipation during an impact. Porous fractal aggregates with different cohesive strength blocks are formed for 0 < μ < 0.4, while they are compact with a layered structure of different strengths for 0.4 < μ < 0.6 and weak ‘rubble piles’ for 0.6 < μ < 1. Cohesive strength estimations of the final cometary nuclei obtained give values generally lower than 10 kPa. The layered aggregates present the highest global cohesive strength, increasing their probability to survive collisions or moderate tidal stress. These results compare well with the structural and cohesive properties of comets deduced from observations and laboratory simulations.  相似文献   

13.
The role of catastrophic collisions in the evolution of the asteroids is discussed in detail, employing extrapolations of experimental results on the outcomrs of high-velocity impacts. We determine the range of the probable largest collision for target asteroids of different sizes during the solar system's lifetime, and we conclude that all the asteroids have undergone collisional events capable of overcoming the material's solid-state cohesion. Such events do not lead inescapably to complete disruption of the targets, because (i) for a previously unfractured target, experiments show that fragments of significant size can survive breakup, depending on the energy and geometry of the collision; (ii) self-gravitation can easily cause a reaccumulation of fragments for targets exceeding a critical size, which seems to be of the order of 100 km. In the intermediate diameter range 100?D ?300 km, where formation of gravitationally bound “rubble piles” is frequent, the transfer of angular momentum can be large enough to produce objects with triaxial equilibrium shapes (Jacobi ellipsoids) or to cause fission into binary systems. In the same size range, low-velocity escape of collisional fragments can also occur, leading to the formation of dynamical families. Asteroids smaller than ~100 km are mostly multigeneration fragments, while for D?300 km the collisional process produces nearly spheroidal objects covered by megaregoliths; whether their rotation is “primordial” or collisionally generated depends critically on the past flux of colliders. The complex and size-dependent phenomenology predicted by the theory compares satisfactorily with the observational evidence, as derived both by a classification of asteroids in terms of their size, spin rate, and lightcurve amplitude, and by a comparison between the rotational properties of family and nonfamily asteroids. The fundamental result of this investigation is that almost all asteroids are outcomes of catastrophic collisions, and that these events cause either complete fragmentation of the target bodies or, at least, drastic readjustments of their internal structure, shape, and spin rate.  相似文献   

14.
Williams et al. (1997) have suggested that a population of hot hydrogen atoms is created in the heliosphere through elastic H-H collisions between energetic `solar' atoms (neutralized solar wind) and interstellar atoms. They used a BGK-like approximation (Bhatnagar et al., 1954) for the Boltzmann collision term and the collision cross sections suggested by Dalgarno (1960). We show that both assumptions result in a significant overestimation of the the H-H collision effect. On the basis of calculated momentum transfer cross-sections for elastic H-H collisions, we argue that elastic H-H and H-p collisions cannot produce hot H atoms in the heliosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
T.M. Davison  G.S. Collins 《Icarus》2010,208(1):468-481
Collisions between planetesimals at speeds of several kilometres per second were common during the early evolution of our Solar System. However, the collateral effects of these collisions are not well understood. In this paper, we quantify the efficiency of heating during high-velocity collisions between planetesimals using hydrocode modelling. We conducted a series of simulations to test the effect on shock heating of the initial porosity and temperature of the planetesimals, the relative velocity of the collision and the relative size of the two colliding bodies. Our results show that while heating is minor in collisions between non-porous planetesimals at impact velocities below 10 km s−1, in agreement with previous work, much higher temperatures are reached in collisions between porous planetesimals. For example, collisions between nearly equal-sized, porous planetesimals can melt all, or nearly all, of the mass of the bodies at collision velocities below 7 km s−1. For collisions of small bodies into larger ones, such as those with an impactor-to-target mass ratio below 0.1, significant localised heating occurs in the target body. At impact velocities as low as 5 km s−1, the mass of melt will be nearly double the mass of the impactor, and the mass of material shock heated by 100 K will be nearly 10 times the mass of the impactor. We present a first-order estimate of the cumulative effects of impact heating on a porous planetesimal parent body by simulating the impact of a population of small bodies until a disruptive event occurs. Before disruption, impact heating is volumetrically minor and highly localised; in no case was more than about 3% of the parent body heated by more than 100 K. However, heating during the final disruptive collision can be significant; in about 10% of cases, almost all of the parent body is heated to 700 K (from an initial temperature of ∼300 K) and more than a tenth of the parent body mass is melted. Hence, energetic collisions between planetesimals could have had important effects on the thermal evolution of primitive materials in the early Solar System.  相似文献   

16.
Abstract— The primordial asteroid belt contained at least several hundred and possibly as many as 10,000 bodies with diameters of 1000 km or larger. Following the formation of Jupiter, nebular gas drag combined with passage of such bodies through Jovian resonances produced high eccentricities (e = 0.3‐0.5), low inclinations (i < 0.5°), and, therefore, high velocities (3–10 km/s) for “resonant” bodies relative to both nebular gas and non‐resonant planetesimals. These high velocities would have produced shock waves in the nebular gas through two mechanisms. First, bow shocks would be produced by supersonic motion of resonant bodies relative to the nebula. Second, high‐velocity collisions of resonant bodies with non‐resonant bodies would have generated impact vapor plume shocks near the collision sites. Both types of shocks would be sufficient to melt chondrule precursors in the nebula, and both are consistent with isotopic evidence for a time delay of ?1‐1.5 Myr between the formation of CAIs and most chondrules. Here, initial simulations are first reported of impact shock wave generation in the nebula and of the local nebular volumes that would be processed by these shocks as a function of impactor size and relative velocity. Second, the approximate maximum chondrule mass production is estimated for both bow shocks and impact‐generated shocks assuming a simplified planetesimal population and a rate of inward migration into resonances consistent with previous simulations. Based on these initial first‐order calculations, impact‐generated shocks can explain only a small fraction of the minimum likely mass of chondrules in the primordial asteroid belt (?1024‐1025g). However, bow shocks are potentially a more efficient source of chondrule production and can explain up to 10–100 times the estimated minimum chondrule mass.  相似文献   

17.
The dominant emission from bare strange stars is thought to be electron–positron pairs, produced through spontaneous pair creation (SPC) in a surface layer of electrons tied to the star by a superstrong electric field. The positrons escape freely, but the electrons are directed towards the star and quickly fill all available states, such that their degeneracy suppresses further SPC. An electron must be reflected and gain energy in order to escape, along with the positron. Each escaping electron leaves a hole that is immediately filled by another electron through SPC. We discuss the collisional processes that produce escaping electrons. When the Landau quantization of the motion perpendicular to the magnetic field is taken into account, electron–electron collisions can lead to an escaping electron only through a multistage process involving higher Landau levels. Although the available estimates of the collision rate are deficient in several ways, it appears that the rate is too low for electron–electron collisions to be effective. A simple kinetic model for electron–quark collisions leads to an estimate of the rate of pair production that is analogous to thermionic emission, but the work function is poorly determined.  相似文献   

18.
Abstract— We review the petrology of Baszkówka, present new microprobe data on mineral constituents, and propose a model for surface properties of the parent body consistent with these data. The low shock index and high porosity of the Baszkówka L5 chondrite mean that considerable primary textural and petrographic detail is preserved, allowing insight into the structure and evolution of the parent body. This meteorite formed in a sedimentary environment resembling that in which pyroclastic rocks are deposited. The origin of the component chondrules, achondritic fragments (mostly olivine and pyroxene aggregates), chondritic‐achondritic aggregates, and compound chondrules can be explained by invoking collision of 2 melted or partially melted planetesimals, each covered with a thin crust. This could have happened at an early stage in the evolution of the solar system, between 1 and 2 Myr after its origin. The collision resulted in the formation of a cloud containing products of earlier magmatic crystallization (chondrite and achondrite fragments) from which new chondrules were created. Particle collision in this cloud produced fragmented chondrules, chondritic‐achondritic aggregates, and compound chondrules. Within this low‐density medium, these particles were accreted on the surface of the larger of the planetesimals involved in the collision. The density of the medium was low enough to prevent grain‐size sorting of the components but high enough to prevent the total loss of heat and to enable the welding of fragments on the surface of the body. The rock material was homogenized within the cloud and, in particular, within the zone close to the planetesimal surface. The hot material settled on the surface and became welded as molten or plastic metal, and sulfide components cemented the grains together. The process resembled the formation of welded ignimbrites. Once these processes on the planetesimal surface were completed, no subsequent recrystallization occurred. The high porosity of the Baszkówka chondrite indicates that the meteorite comes from a near‐surface part of the parent body. Deeper parts of the planetesimal would have been more massive because of compaction.  相似文献   

19.
The effects of collisions between two galaxies on the test galaxy considered are classified as follows — Type A: the changes in the size and mass of the test galaxy are both negligible; Type B: There is significant increase in the size (at least 10%) or decrease in the mass (at least 1%) of the test galaxy or in both; Type C: The test galaxy becomes a component of a double galaxy by tidal capture; Type D: The test galaxy is disrupted by the tidal forces of the field galaxy.The type of collision is given as a function of the distance and speed at closest approach and also as a function of the initial impact parameter and speed at infinite separation of the two galaxies for two density models of the galaxies. Collisions in which the two galaxies do not penetrate each other are generally of type A while slow interpenetrating collisions are generally of type B. Types C and D occur in head-on or nearly head-on collisions if the relative speed of the two galaxies is sufficiently small; the former is favoured if the two galaxies do not differ appreciably in mass and density distribution. If one of the two galaxies is considerably less massive or less centrally concentrated than the other, it will be disrupted in slow close collisions.  相似文献   

20.
In laboratory experiments we determine the mass gain and loss in central collisions between centimetre- to decimetre-size SiO2 dust targets and submillimetre- to centimetre-size SiO2 dust projectiles of varying mass, size, shape and at different collision velocities up to ∼56.5 m s−1. Dust projectiles much larger than 1 mm lead to a small amount of erosion of the target but decimetre targets do not break up. Collisions produce ejecta, which are smaller than the incoming projectile. Projectiles smaller than 1 mm are accreted by a target even at the highest collision velocities. This implies that net accretion of decimetre and larger bodies is possible. Independent of the original size of a considered projectile, after several collisions, all fragments will be of submillimetre size which might then be (re)accreted in the next collision with a larger body. The experimental data suggest that collisional growth through fragmentation and reaccretion is a viable mechanism to form planetesimals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号