首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northern section of the molecular cloud complex NGC 6334 has been mapped in the CO and CS spectral line emission and in continuum emission at a wavelength of 1300 μm. Our observations highlight the two dominant sources, I and I(N), and a host of weaker sources. NGC 6334 I is associated with a cometary ultracompact H  ii region and a hot, compact core ≤10 arcsec in size. Mid-infrared and CH3OH observations indicate that it is also associated with at least two protostellar sources, each of which may drive a molecular outflow. For region I we confirm the extreme high-velocity outflow first discovered by Bachiller & Cernicharo and find that it is very energetic with a mechanical luminosity of 390 L. A dynamical age for the outflow is ∼3000 yr. We also find a weaker outflow originating from the vicinity of NGC 6334 I. In CO and CS this outflow is quite prominent to the north-west, but much less so on the eastern side of I, where there is very little molecular gas. Spectral survey data show a molecular environment at position I which is rich in methanol, methyl formate and dimethyl ether, with lines ranging in energy up to 900 K above the ground state. NGC 6334 I(N) is more dense than I, but cooler, and has none of the high-excitation lines observed toward I. I(N) also has an associated outflow, but it is less energetic than the outflow from I. The fully sampled continuum map shows a network of filaments, voids and cores, many of which are likely to be sites of star formation. A striking feature is a narrow, linear ridge which defines the western boundary. It is unclear if there is a connection between this filament and the many potential sites of star formation, or if the filament existed prior to the star formation activity.  相似文献   

2.
Star formation     
Various topics on star formation, centered on the observed properties of young stars and their environment, are reviewed. (a) In our Galaxy, young stellar objects are generally associated with giant molecular clouds. (b) Giant molecular clouds cannot be in free-fall collapse. They are probably stabilized by magnetic fields, which are then likely to dominate the dynamical evolution of the clouds themselves. (c) Star formation occurs mostly in spiral arms. The role of spiral density waves is however not yet clearly understood. (d) The formation of massive stars can perturb the evolution of the progenitor cloud, and possibly trigger the sequential formation of OB subgroups. (e) There is a large number of clouds in the Galaxy associated only with low and intermediate mass young stars. These clouds are not perturbed by the presence of massive stars, and are probably the best source of information on the primary triggering mechanism, active on a galactic scale, and on the initial conditions for star formation.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

3.
Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.  相似文献   

4.
We analyse the data from narrow band H and [O III] CCD imaging of a sample of nearby spiral galaxies with active nuclei. The results show that the large scale star formation depends on the level of nuclear activity, with Seyfert 2 presenting the strongest disk and circum-nuclear star formation, while Seyfert 1 show very little. We present particular results for the galaxies NGC 3982, NGC 4579, NGC 5427 and NGC 7469.  相似文献   

5.
Data with the 2MASS prototype camera were obtained in a 2.3 sq. deg region in Taurus containing Heiles Cloud 2, a region known from IRAS observations to contain a number of very young solar type stars. Data at 1.25 (J), 1.65 (H), and 2.2 (K s )µm are presented. These data are representative of the type and quality of data expected from the planned near-IR surveys, 2MASS and DENIS. Near-IR surveys will be useful for determining the large scale variation of extinction with clouds, for determining the luminosity function in nearby clouds down to ranges of 0.1–1.0 L, and for finding highly extincted T Tauri stars missed by IRAS because the bulk of their luminosity is emitted shortward of 12µm.  相似文献   

6.
Hildner  E. 《Solar physics》1974,35(1):123-136
We model the formation of solar quiescent prominences by solving numerically the non-linear, time-dependent, magnetohydrodynamic equations governing the condensation of the corona. A two-dimensional geometry is used. Gravitational and magnetic fields are included, but thermal conduction is neglected. The coronal fluid is assumed to cool by radiation and to be heated by the dissipation of mechanical energy carried by shock waves. A small, isobaric perturbation of the initial thermal and mechanical equilibrium is introduced and the fluid is allowed to relax. Because the corona with the given energy sources is thermally unstable, cooling and condensation result.When magnetic and gravitational fields are absent, condensation occurs isotropically with a strongly time-dependent growth rate, and achieves a density 18 times the initial density in 3.5 × 104 s. The rapidity of condensation is limited by hydrodynamical considerations, in contrast to the treatment of Raju (1968). When both magnetic and gravitational fields are included, the rate of condensation is inhibited and denser material falls.We conclude that: (1) condensation of coronal material due to thermal instability is possible if thermal conduction is inhibited; (2) hydrodynamical processes determine, in large part, the rate of condensation; (3) condensation can occur on a time scale compatible with the observed times of formation of quiescent prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
We study the evolution of supernova remnants in a low-metallicity medium   Z /Z= 10−4 to 10−2  in the early universe, using one-dimensional hydrodynamics with non-equilibrium chemistry. Once a post-shock layer is able to cool radiatively, a dense shell forms behind the shock. If this shell becomes gravitationally unstable and fragments into pieces, next-generation stars are expected to form from these fragments. To explore the possibility of this triggered star formation, we apply a linear perturbation analysis of an expanding shell to our results and constrain the parameter range of ambient density, explosion energy and metallicity where fragmentation of the shell occurs. For the explosion energy of  1051 erg (1052 erg)  , the shell fragmentation occurs for ambient densities higher than  ≳102 cm−3 (10 cm−3  ), respectively. This condition depends little on the metallicity in the ranges we examined. We find that the mode of star formation triggered occurs only in massive  (≳108 M)  haloes.  相似文献   

8.
A star formation region connected with SNO 41 is investigated. The observations of this region were carried out in the 12CO (1-0) line and in the 1.2-mm (with SIMBA) with the 15-m SEST mm telescope (Cerro La Silla, Chile). A blue shifted outflow is revealed from the 12CO(1-0) observations, while a bipolar outflow is apparent from the 1.2-mm SIMBA image. In CO it seems that a very faint dust envelope around SNO 41 probably exists, which is expanding with a velocity of ∼10.5 km/s. The distance to SNO 41 is estimated as ∼1500 pc. There are outflows also present in 2MASS images. A spiral jet has a condensation (resembling a HH object) at the end. Another jet has a discontinuity and a bow-shock-like structure on it. In 2MASS images there are also spots resembling HH objects. In this region there is also a rather luminous point source (IRAS 08546-4254), which has IR colors typical for an YSO connected with a water maser. The detection of a strong CS (2-1) line emission toward IRAS 08546-4254, with the same velocity as the CO line, shows the existence of a high density core of molecular gas associated to this source. A methanol maser is also associated with that IRAS source. The existence of CS line emission and a methanol maser (at 6.669 Ghz) is an indication of the presence of a very young massive star. It is not excluded that this IRAS source is the center of outflows mentioned above, because this source coincides with the center of the 1.2-mm SIMBA image and also with the place of origin of the jet with bow-shock-like structure. Published in Astrofizika, Vol. 50, No. 1, pp. 5–15 (February 2007).  相似文献   

9.
We analyze the gravitational stability of a shocked interstellar gas layer and show how such a layer fragments into protostellar condensations whilst it is still confined mainly by ram pressure. As a consequence, the resulting protostars are massive and well separated. Our analysis is completely general and applies both to layers resulting from collisions between molecular cloud clumps, and to shells swept up by expanding nebulae. We present a numerical simulation of the former scenario, which produces a cluster of 35 massive stars resembling an OB subgroup, with most of the stars in binary systems.  相似文献   

10.
The hypothesis advanced by V. A. Ambartsumyan according to which stars are formed from prestellar superdense objects-- protostars-- was an alternative to the hypothesis of the 1950's (and even now, not much changed) according to which stars are formed by accretion with subsequent collapse (in various modifications). Ambartsumyan's basic inferences were based on an analysis of the observational data available at that time. This paper presents both Ambartsumyan's pioneering ideas and some modern hypotheses of star formation. Some results from studies of molecular clouds and star formation regions are also discussed. One of the distinctive features of young stellar objects (YSO) is the outflow of matter from these objects (molecular, in the form of jets, etc.), a phenomenon whose importance for the evolution of stars was noted by Ambartsumyan as long ago as 1937. Radial systems of dark globules are examined, as well as H-H objects associated with star formation regions, cometary nebulae, and close Trapeziumtype systems (consisting of YSO). Translated from Astrofizika, Vol. 52, No. 2, pp. 185–202 (May 2009).  相似文献   

11.
Lynds 1199 is an extended dark cloud of moderate opacity in the upper Cepheus region. The B3V type star HD206135 illuminating the reflection nebula DG 175 is associated with this cloud. In this paper the nature of the cloud and its associated young stellar objects is studied on the basis of13CO data obtained with the 4 m millimeter wave telescope of Nagoya University, photographic observations taken with the 60/90 cm Schmidt telescope of Konkoly Observatory, as well as IRAS data.  相似文献   

12.
We present a study of the star formation in the giant Hii region NGC5471 in the outskirts of M101. We have performed integrated photometry of the mean emission knots. Stellar population analysis with the code chorizos is compatible with the hypothesis that these regions have at least two different populations. The color–magnitude diagram of the region as derived from Hubble Space Telescope/WPFC2 stellar photometry shows that star formation has been going on for the last 70 Myr.  相似文献   

13.
A.G.W. Cameron 《Icarus》1984,60(2):416-427
A supernova trigger for star formation, such as was discussed by Cameron and Truran a few years ago, lacks observational confirmation, and the nucleosynthesis arguments for suggesting its relevance to the formation of the solar system no longer seem compelling. Observations of star formation currently point toward nearly isolated individual events taking place in the interiors of dense molecular clouds, in which cores are formed in the clouds and collapse to form stars. If the formation of the solar system proceeded in this manner, then a viable theory of cloud core formation must provide circumstances in which it is not uncommon for the cloud cores to be formed with a significant supply of fresh short-lived radioactivities. A review is made of the evidence for the existence of now extinct radioactivities in primitive solar system material and an examination is made of the implications for the early stages of formation of the Sun and solar system. The characteristics of possible disturbances in dense molecular clouds which can initiate the formation of cloud cores is discussed,and in particular those disturbances which can produce fresh radioactivities are considered. A red giant star of roughly one solar mass on the asymptotic giant branch appears to have been the best candidate to account for the short-lived extinct radioactivities in the early solar system. Star formation itself can generate disturbances through the T Tauri stellar winds and bipolar outflows, and it appears likely that several such disturbances in a chain of star-forming events were needed before the radioactive material was diluted enough to be consistent with the abundances seen in early solar system material.  相似文献   

14.
A previous theory of the authors regarding the planetary system is generalized in an attempt to include star formation. It is found that the theory predicts the correct mass and radius for stellar clusters and also the general shape of the galaxy.  相似文献   

15.
We studied fragmentation process of the interstellar molecular cloud which is predominated by supersonic turbulence with special regard to collisions of turbulent gas elements and formation of a shock-compressed layer by receding shock waves. The propagation of the shock waves and the evolution of the compressed layer are followed by one-dimensional gas dynamical simulation until self-gravity becomes significant, taking account of the effects of thermal properties of the molecular gas and magnetic fields. It is shown that the efficient cooling by CO molecules and its sensitive dependence on gas density make the shock-compressed layer so cold and dense that the layer becomes gravitationally unstable and breaks into fragments even if the gas elements are gravitationally stable prior to the collision. The mass of the unstable fragment is estimated to be about two solar masses or less, irrespective of the presence of the magnetic field. The stars formed by collisions of supersonic turbulent gas elements accelerate the surrounding gas in T Tauri stage and replenish the turbulent energy to maintain the mechanical equilibrium of the molecular cloud.  相似文献   

16.
17.
We present a 3d code for the dynamical evolution of a multi-phase interstellar medium (ISM) coupled to stars via star formation (SF) and feedback processes. The multi-phase ISM consists of clouds (sticky particles) and diffuse gas (SPH): exchange of matter, energy and momentum is achieved by drag (due to ram pressure) and condensation or evaporation processes. The cycle of matter is completed by SF and feedback by SNe and PNe. A SF scheme based on a variable SF efficiency as proposed by Elmegreen and Efremov (1997) is presented. For a Milky Way type galaxy we get a SF rate of ∼1 M yr-1 with an average SF efficiency of ∼5%. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Pneuman  G. W. 《Solar physics》1983,88(1-2):219-239
A model for solar quiescent prominences nested in a Figure 8 magnetic field topology is developed. This topology is argued to be the natural consequence of the distention of bipolar regions upward into the corona. If this distention is slow enough so that hydrostatic equilibrium holds approximately along the field lines, the transverse gas pressure forces fall exponentially with height whereas the inward Lorentz forces fall as a power law. At a low height in the corona, the pressure forces cannot balance the Lorentz forces provided the field lines remain tied to the photosphere and an inward collapse with subsequent reconnection at the point of closest approach should occur. Because of initial shear in the magnetic field, the reconnection would produce isolated helices above the point of reconnection since field lines would not interact with themselves but with their neighbors. This resulting topology produces a field above the elevated neutral line which is opposite in polarity to that of the photospheric field as in the current sheet models of Kuperus and Tandberg-Hanssen (1967). Raadu and Kuperus (1973), Kuperus and Raadu (1974), and Raadu (1979) and in agreement with recent observations of Leroy (1982), and Leroy et al. (1983).Assuming the isolated helices formed by reconnection are insulated from coronal thermal conduction and heating, the radiative cooling process and condensation is considered for the temperature range of 104-6000 K. This condensation results in a steady downflow to the bottom of the helices as the temperature scale-height falls, thus forming a dense, cool, prominence at the bottom of the helical configuration resting on the elevated neutral line with the remainder of the helix being essentially evacuated of material. We identify this neutral line at the bottom of the prominence with the sharp lower edge often seen when viewing quiescent prominences side-on and the evacuated helix with the coronal cavity observed around prominences when seen during total eclipses.Downflow speeds associated with the condensation process are calculated for prominence temperatures and yield velocities in the range of the observed downflows of about 1 km s–1.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
Using population fitting and galactic chemical evolution (GCE) models we unravel the information present in spectral line-strengths, for a sample of 32 galaxies including ellipticals, S0s and spiral bulges. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
We have produced radio maps, using the Australia Telescope Compact Array, of the central regions of six southern type 2 Seyfert galaxies (NGC 1365, 4945, 6221, 6810, 7582 and Circinus) with circumnuclear star formation, to estimate the relative contribution of star formation activity compared to activity from the active galactic nucleus (AGN). The radio morphologies range from extended diffuse structures to compact nuclear emission, with no evidence, even in the relatively compact sources, for synchrotron self-absorption. In each case the radio to far-infrared (FIR) ratio has a value consistent with star formation, and in all but one case the radio to [Fe  II ] ratio is also consistent with star formation. We derive supernova rates and conclude that, despite the presence of a Seyfert nucleus in these galaxies, the radio, FIR and [Fe  II ] line emissions are dominated by processes associated with the circumnuclear star formation (i.e. supernova remnants and H  II regions) rather than with the AGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号