共查询到20条相似文献,搜索用时 15 毫秒
1.
热带太平洋-印度洋上层热含量年际变化的主模态 总被引:3,自引:0,他引:3
利用多种海洋资料,采用经验正交函数分解(EOF)与合成分析等方法研究了热带太平洋-印度洋热含量年际变化的主要模态及其对应的转换过程。结果表明其第一模态对应El Nino事件成熟位相时的空间分布,即热带西太平洋和东印度洋为一冷中心,西南印度洋和赤道东太平洋为暖中心;第二模态对应着El Nino事件过渡期的空间分布,太平洋10°N附近以及赤道带为变化中心,而印度洋的变化中心主要在苏门答腊岛西部的赤道东印度洋海区。这2个模态基本刻画了ENSO循环过程中热带两大洋热含量变化的关键海区。利用合成分析结果与EOF分解结果的相似性,探讨了EOF分解前两个模态之间的转换过程,发现第一模态可能主要是通过海洋波动的传播过程调整到第二模态的,而第二模态还可以作为El Nino或La Nina事件的预报因子。此外,分析结果还表明,El Nino事件与La Nina事件对应的热含量变化并不是反对称的。 相似文献
2.
探讨了影响东北印度洋上层海水热含量变化的各要素的季节变化,以及其对热含量变化的贡献和作用过程.根据MOM4数值模拟所得的气候态数据,利用热力学方程积分所得的热通量方程,分析了热含量和各影响要素的季节变化过程.结果表明,东北印度洋海洋动力过程的作用主要存在于海洋上层100 m以内;该区域上层海水热含量的季节变化,是典型的海-气相互作用的结果,由动力过程和海表净热通量共同控制,2种作用都有明显的季节变化特征,并且随区域的变化两者贡献有所变化;西南季风爆发前,上层海洋热含量最大值的出现,是之前几个月动力作用和海表净热通量共同加热的结果. 相似文献
3.
热带印度洋偶极子事件和副热带印度洋偶极子事件的联系 总被引:6,自引:0,他引:6
分别对热带印度洋偶极子事件和副热带印度洋偶极子事件的时间序列进行了周期分析。结果表明,热带印度洋偶极子事件的主要振荡周期为2 a和4 a,而副热带偶极子事件的主要振荡周期为8 a;对整个印度洋海区的海表温度距平进行2~8 a的带通滤波,发现未滤波之前,2个事件的相关性很低,而在进行了滤波之后,2个事件的相关性有很大的提高,并且当副热带印度洋偶极子事件超前热带印度洋偶极子事件9个月时,二者具有很强的相关性。通过对温度场和风场的分析,从物理上解释了2个事件之间的相互联系。 相似文献
4.
热带印度洋降水的年际变化特征分析 总被引:1,自引:0,他引:1
对热带印度洋海区逐月降水资料的分析表明,热带印度洋海区降水年际变化的主要特征表现为东、西方向反位相的偶极子模态,该模态与热带印度洋海区低空纬向风场异常有较强的相关,并且与太平洋ENSO事件存在显著相关。另外对偶极子型降水主要模态的周期分析表明,偶极子型降水距平还存在1.5 a和4 a左右的变化周期。 相似文献
5.
6.
The dynamic importance of the Southern Indian Ocean (SIO) lies in the fact that it connects the three major world oceans: the Pacific, Atlantic, and Indian Oceans. Modeling study has been used to understand the circulation pattern of this very important region. Simulation of SIO (10°N–60°S and 30°E–120°E) is performed with z-coordinate Ocean General Circulation Model (OGCM) viz; MOM3.0 and the results have been compared with observed ship drift data. It is found that except near coastal boundaries and in equatorial region, the simulated current reproduce most well known current pattern such as Antarctic Circumpolar Current (ACC), South Equatorial Current (SEC) etc. and bears a resemblance to that of the observed data; however the magnitude of the surface current is weaker in model than the observed data, which may be due to deficiency in the forcing field and boundary condition and problem with observed data. The annual mean wind stress curl computed over the oceanic domain reveals about ACC and its similar importance. The way in which the ocean responds to the windstress and vertically integrated transport using model output is fascinating and rather good. 相似文献
7.
The North Indian Ocean exhibits profound impact of variation in lower tropospheric winds. In the present study climatological monthly winds are used to force a nonlinear reduced gravity model of the North Indian Ocean to simulate climatological surface circulation and sea level anomaly for all 12 months of the year. The sea level anomalies agree reasonably well with satellite altimeter derived sea level anomalies. The model successfully simulates the varying eddy structure and current pattern of the North Indian Ocean. Finally, the kinetic energy variation in the North Indian Ocean with special reference to equatorial region and the boundaries is analyzed in detail. 相似文献
8.
The North Indian Ocean exhibits profound impact of variation in lower tropospheric winds. In the present study climatological monthly winds are used to force a nonlinear reduced gravity model of the North Indian Ocean to simulate climatological surface circulation and sea level anomaly for all 12 months of the year. The sea level anomalies agree reasonably well with satellite altimeter derived sea level anomalies. The model successfully simulates the varying eddy structure and current pattern of the North Indian Ocean. Finally, the kinetic energy variation in the North Indian Ocean with special reference to equatorial region and the boundaries is analyzed in detail. 相似文献
9.
Ocean Model Simulation of Southern Indian Ocean Surface Currents 总被引:1,自引:0,他引:1
The dynamic importance of the Southern Indian Ocean (SIO) lies in the fact that it connects the three major world oceans: the Pacific, Atlantic, and Indian Oceans. Modeling study has been used to understand the circulation pattern of this very important region. Simulation of SIO (10°N-60°S and 30°E-120°E) is performed with z-coordinate Ocean General Circulation Model (OGCM) viz; MOM3.0 and the results have been compared with observed ship drift data. It is found that except near coastal boundaries and in equatorial region, the simulated current reproduce most well known current pattern such as Antarctic Circumpolar Current (ACC), South Equatorial Current (SEC) etc. and bears a resemblance to that of the observed data; however the magnitude of the surface current is weaker in model than the observed data, which may be due to deficiency in the forcing field and boundary condition and problem with observed data. The annual mean wind stress curl computed over the oceanic domain reveals about ACC and its similar importance. The way in which the ocean responds to the windstress and vertically integrated transport using model output is fascinating and rather good. 相似文献
10.
Seasonal Variability of Near-Surface Heat Budget of Selected Oceanic Areas in the North Tropical Indian Ocean 总被引:1,自引:0,他引:1
The results obtained from an Ocean General Circulation Model (OGCM), the Modular Ocean Model 2.2, forced with the National
Center for Environmental Prediction/National Center for Atmospheric Research reanalysis data, and observational data have
been utilized to document the climatological seasonal cycle of the upper ocean response in the Tropical Indian Ocean. We address
the various roles played by the net surface heat flux and the local and remote ocean dynamics for the seasonal variation of
near-surface heat budget in the Tropical Indian Ocean. The investigation is based in seven selected boxes in the Arabian Sea,
Bay of Bengal and the Equatorial Indian Ocean. The changes of basin-wide heat budget of ocean process in the Arabian Sea and
the Western Equatorial Indian Ocean show an annual cycle, whereas those in the Bay of Bengal and the Eastern Equatorial Indian
Ocean show a semi-annual cycle. The time tendency of heat budget in the Arabian Sea depends on both the net surface heat flux
and ocean dynamics while on the other hand, that in the Bay of Bengal depends mainly on the net surface flux. However, it
has been found that the changes of heat budget are very different between western and eastern regional sea areas in the Arabian
Sea and the Bay of Bengal, respectively. This difference depends on seasonal variations of the different local wind forcing
and the different ocean dynamics associated with ocean eddies and Kelvin and Rossby waves in each regional sea areas. We also
discuss the comparison and the connection for the seasonal variation of near-surface heat budget among their regional sea
areas.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
11.
ENSO事件中热带太平洋上层海洋热含量变化分析 总被引:12,自引:1,他引:12
利用1955-2001年海洋上400m层的热含量资料,分析了20世纪60年代以来全部El Nino/La Nina事件期间上层海洋热含量异常的空间分布规律和传播特性,发现如下3个重要观测事实:(1)在ENSO循环期间存在着关于赤道对称的南北2个热含量异常信号的闭合传播路径;(2)北半球的信号闭合回路非常清晰,而南半球回路较为混乱;(3)这种闭合回路在El Nino/La Nina年份表现得非常明显,但在其它年份可能由于海洋或大气的条件不匹配而中途夭折。上述观测事实对于ENSO研究具有重要价值,其物理机制值得进一步探讨。 相似文献
12.
The present study developed a high-quality climatological dataset for the Indian Ocean - the Indian Ocean HydroBase (IOHB) - from a combined dataset including the World Ocean Database 1998 version 2 (WOD98v2). Methods are similar to those used by previous studies for other oceans. Japanese data for the IOHB originated from the Japanese datasets MIRC (Marine Information Research Center) Ocean Dataset 2001 and Far Seas Collection; these datasets contain more Japanese observations than WOD98v2. Water mass properties in the IOHB climatology are consistent with previous studies. Seasonal patterns of properties near the sea surface are well reproduced, and deep-layer properties are consistent with the Reid-Mantyla climatology that is derived from high-quality observations. The isopycnal climatology of the IOHB differs from the World Ocean Atlas 2001 (WOA01) along the fronts associated with the Antarctic Circumpolar Current (ACC). The WOA01 shows a warm and saline intermediate water intrusion from South Africa to the east along the northern edge of the front. Such an intrusion is absent in IOHB where less saline intermediate water extends continuously northward from the southern ocean. The WOA01 shows a continuous belt of low potential vorticity along the ACC. This feature is less distinct in the IOHB climatology and in the Reid-Mantyla climatology. The IOHB consists of a 1° × 1° gridded climatology and the datasets of raw and quality-controlled hydrographic stations. The latter is valuable for quality control of the Argo float salinity data as climatological reference. These datasets are available freely via the Internet. 相似文献
13.
热带印度洋和太平洋海气相互作用事件的协调发展 总被引:6,自引:0,他引:6
对次表层海温距平的分布和变化的分析表明,在热带印度洋和太平洋都存在海温距平的偶极子模态,即在赤道附近大洋东、西两个部分的海温距平在不少年份呈反符号分布。进一步分析表明,两大洋海温距平的偶极子模态间有密切的联系。在分析它们和850hPa纬向风距平后指出,正是Walker环流异常把两大洋的海温距平变化联系起来。 相似文献
14.
A regional ocean circulation model with four-dimensional variational data assimilation scheme is configured to study the ocean state of the Indian Ocean region (65°E–95°E; 5°N–20°N) covering the Arabian Sea (AS) and Bay of Bengal (BoB). The state estimation setup uses 10 km horizontal resolution and 5 m vertical resolution in the upper ocean. The in-situ temperature and salinity, satellite-derived observations of sea surface height, and blended (in-situ and satellite-derived) observations of sea surface temperature alongwith their associated uncertainties are used for data assimilation with the regionally configured ocean model. The ocean state estimation is carried out for 61 days (1 June to 31 July 2013). The assimilated fields are closer to observations compared to other global state estimates. The mixed layer depth (MLD) of the region shows deepening during the period of assimilation with AS showing higher MLD compared to the BoB. An empirical forecast equation is derived for the prediction of MLD using the air–sea forcing variables as predictors. The surface and sub-surface (50 m) heat and salt budget tendencies of the region are also investigated. It is found that at the sub-surface, only the advection and diffusion temperature and salt tendencies are important. 相似文献
15.
本文基于海洋环流模式模拟的高分辨率欧拉场,利用拉格朗日追踪方法,评估了印尼贯穿流(ITF)对印度洋的热量贡献。通过计算ITF水体在印度洋的传输路径及伴随的温度变化来获取ITF水体在印度洋的热量传输过程。模拟结果表明ITF进入印度洋后主要向西流动并在到达马达加斯加后分叉,进入南、北印度洋。热收支分析表明ITF在北印度洋吸收0.41 PW热量,在南印度洋释放0.56 PW热量;这两个过程相互补偿,导致ITF对整个印度洋的净加热贡献并不显著,只有0.15 PW。进一步的检查ITF离开印度洋的出口(跨过34°S),结果表明ITF主要随着位于西边界的奥古拉斯流和位于东边界的利文流离开印度洋。约89%的ITF水体沿着西边界离开印度洋,其余的11%主要沿着东边界离开印度洋;前者对整个印度洋的净加热贡献为0.10 PW,后者的净加热贡献为0.05 PW。 相似文献
16.
On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports 总被引:1,自引:0,他引:1
Joseph L. Reid 《Progress in Oceanography》2003,56(1):137-186
The large-scale circulation of the Indian Ocean has several major components. There is a cyclonic gyre in the far southwest with its axis along about 60°S. It extends to the bottom. North of this the Circumpolar Current flows eastward south of 40°S to more than 3000 m. The axis of the great anticyclonic gyre lies along 35°S to 40°S down to about 2000 m. Below there the western end shifts northward and the axis lies along the central and southeast Indian ridges, with southward flow west of the ridges and northward flow on the east side.There is a westward flow along 10°S to 15°S, which includes water from the Pacific, through the Banda Sea. The flow near the equator is eastward down to the depth of the ridge near 73°E. Flow within both the Arabian Sea and Bay of Bengal is cyclonic down to great depth.There is a southward flow along the coast of Africa in the upper 2000 m joining the Circumpolar Current, and a southward flow along the coast of Australia that does not reach the Circumpolar Current.Below 2500 m there is a northward flow from the Circumpolar Current along the east coast of Madagascar and on into the Somali and Arabian basins. 相似文献
17.
The Sea Surface Temperatures (SST) and currents are simulated over the north Indian Ocean, during the onset phase of southwest monsoon for the three years 1994, 1995, and 1996, using daily Special Sensor Microwave/Imager (SSM/I) winds and National Center for Environmental Prediction (NCEP) heat fluxes as forcings in the 2½ layer thermodynamic numerical ocean model. The results are discussed for the 30-day period from 16 May to 13 June for all the three years, to determine the ocean state during the onset phase of SW monsoon. The maximum variability in the simulated SST is found along the Somali coast, Indian coasts, and equatorial regions. The maximum SST in the North Arabian Sea is found to be greater than 30°C and minimum SST in the west equatorial region is 25°C during the onset phase of all three years. Model SSTs are in agreement with Reynolds SST. SST gradients in the north-south as well as in the east-west directions, west of 80°E are found to change significantly prior to the onset. It can be inferred from the study that the SST gradient of 2.5°C/2000 km is seen due north and due west of the region 2° - 7°S, 60° - 65°E, about 8 to 10 days prior to the arrival of SW monsoon near Kerala coast. Upper and lower layer circulation fields do not show prominent interannual variability. 相似文献
18.
Effects of Interannual Variability in the Eastern Indian Ocean on the Indonesian Throughflow 总被引:3,自引:0,他引:3
Yukio Masumoto 《Journal of Oceanography》2002,58(1):175-182
The influences of the large-scale interannual variations in the eastern Indian Ocean on the variability of the Indonesian throughflow are investigated by using an ocean general circulation model, driven by the ERS satellite winds from July 1992 to June 1997. The empirical orthogonal function (EOF) analysis of the simulated surface dynamic height variability captures two dominant modes on an interannual time scale, which are quite consistent with the available observations. The first mode indicates large amplitude in the western tropical Pacific and has a strong relation to the El Niño events, while the second EOF exhibits the large amplitude in the eastern Indian Ocean. The simulated net Indonesian throughflow shows an interannual variation of amplitude of about 15 Sv, with large transport from the Pacific to the Indian Ocean during 1994/95 and small transport during 1992 and 1997. It turns out that the net throughflow variation shows a high correlation with the second EOF mode (r = 0.51) for the whole five-year simulation. On the other hand, the correlation with the first mode is rather low (r = ?0.07). However, the relative importance of the EOF modes to the throughflow variability changes with time. The upper-layer transport above a depth of 230 m in the Indonesian archipelago is also affected by the second mode. The difference in the upper-layer transport across 1°S and 110°E generates warm water convergence/divergence with a magnitude of 4 Sv within the Indonesian Seas on the interannual time scale, which shows good correspondence with sea surface temperature variation averaged over the Indonesian archipelago. 相似文献
19.
波浪诱导的水体输运会对海洋产生大尺度影响。结合波浪大尺度效应的研究现状和印度洋涌浪分布的事实,利用ECMWF-CERA20的波浪、海表面温度(SST)及风场数据,采用多种统计分析方法,研究了波浪输运与赤道印度洋SST的潜在关系。结果显示:中高纬度波浪输运异常的低频信号在空间、周期上与赤道SST异常均有高度相似性;Stokes漂流纬向、经向异常呈现出南—北、东—西的振荡,其第二模态时间序列与印度洋偶极子(Indian Ocean Dipole,IOD)指数存在强相关性并在La Ni a次年的负IOD事件中达到最高:相关系数在ACC区域纬向异常超前6个月时接近0.6,中纬度区域经向异常在超前3个月时达到0.7。在La Ni a次年的负IOD中,波浪经向输运异常的相位(超前三个月)与赤道SST异常相位呈全年反相位,经向浪致输运异常造成的东—西热量输运差异对赤道SST异常分布有不可忽略的贡献。 相似文献
20.
Elaine L. McDonagh Harry L. Bryden Brian A. King Richard J. Sanders 《Progress in Oceanography》2008,79(1):20-36
Using inverse methods a circulation for a new section along 32°S in the Indian Ocean is derived with a maximum in the overturning stream function (or deep overturning) of 10.3 Sv at 3310 m. Shipboard and Lowered Acoustic Doppler Current Profiler (ADCP) data are used to inform the choice of reference level velocity for the initial geostrophic field. Our preferred solution includes a silicate constraint (−312 ± 380 kmol s−1) consistent with an Indonesian throughflow of 12 Sv. The overturning changes from 12.3 Sv at 3270 m when the silicate constraint is omitted to 10.3 Sv when it is included. The deep overturning varies by only ±0.7 Sv as the silicate constraint varies from +68 to −692 kmol s−1, and by ±0.3 Sv as the net flux across the section, driven by the Indonesian throughflow, varies from −7 to −17 Sv with an appropriately scaled silicate flux constraint. Thus, the overturning is insensitive to the size of the Indonesian throughflow and silicate constraint within their apriori uncertainties. We find that the use of the ADCP data adds significant detail to the horizontal circulation. These resolved circulations include the Agulhas Undercurrent, deep cyclonic gyres and deep fronts, features evidenced by long term integrators of the flow such as current meter and float measurements as well as water properties. 相似文献