首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A regional ocean circulation model with four-dimensional variational data assimilation scheme is configured to study the ocean state of the Indian Ocean region (65°E–95°E; 5°N–20°N) covering the Arabian Sea (AS) and Bay of Bengal (BoB). The state estimation setup uses 10 km horizontal resolution and 5 m vertical resolution in the upper ocean. The in-situ temperature and salinity, satellite-derived observations of sea surface height, and blended (in-situ and satellite-derived) observations of sea surface temperature alongwith their associated uncertainties are used for data assimilation with the regionally configured ocean model. The ocean state estimation is carried out for 61 days (1 June to 31 July 2013). The assimilated fields are closer to observations compared to other global state estimates. The mixed layer depth (MLD) of the region shows deepening during the period of assimilation with AS showing higher MLD compared to the BoB. An empirical forecast equation is derived for the prediction of MLD using the air–sea forcing variables as predictors. The surface and sub-surface (50 m) heat and salt budget tendencies of the region are also investigated. It is found that at the sub-surface, only the advection and diffusion temperature and salt tendencies are important.  相似文献   

2.
A total of 25 surficial sediment samples (Peterson grab, gravity and piston cores), collected during the Pilot Expedition to Southern Ocean (PESO) 2004 cruises 199C and 200 onboard the ORV Sagar Kanya along a N–S transect between 9.69°N and 55.01°S, and 80 and 40°E in the Indian Ocean sector of the Southern Ocean (SW Indian Ocean), have been investigated for various morphological features—test size, mean proloculus size and coiling direction (dextral/sinistral forms)—of the planktic indicator species Neogloboquadrina pachyderma (Ehrenberg). The results show that the coiling directions co-vary with temperature and salinity, the abundances of sinistrally coiled forms increasing towards higher latitudes (south of 40°S), whereas dextrally coiled forms show a reverse trend. Similarly, overall test and proloculus sizes depend largely on the physicochemical properties (salinity, temperature, nutrients, calcium saturation) of the ambient water masses. These observations suggest that, particularly at the boundaries between different water masses, variations in morphological features of N. pachyderma can meaningfully be used to reconstruct paleoceanographic conditions from Indian Ocean sediments.  相似文献   

3.
The dynamic importance of the Southern Indian Ocean (SIO) lies in the fact that it connects the three major world oceans: the Pacific, Atlantic, and Indian Oceans. Modeling study has been used to understand the circulation pattern of this very important region. Simulation of SIO (10°N–60°S and 30°E–120°E) is performed with z-coordinate Ocean General Circulation Model (OGCM) viz; MOM3.0 and the results have been compared with observed ship drift data. It is found that except near coastal boundaries and in equatorial region, the simulated current reproduce most well known current pattern such as Antarctic Circumpolar Current (ACC), South Equatorial Current (SEC) etc. and bears a resemblance to that of the observed data; however the magnitude of the surface current is weaker in model than the observed data, which may be due to deficiency in the forcing field and boundary condition and problem with observed data. The annual mean wind stress curl computed over the oceanic domain reveals about ACC and its similar importance. The way in which the ocean responds to the windstress and vertically integrated transport using model output is fascinating and rather good.  相似文献   

4.
Mixed layer depth (MLD) variability in the Eastern Equatorial Indian Ocean (EEIO) from a hindcast run of an Ocean General Circulation Model (OGCM) forced by daily winds and radiative fluxes from NCEP-NCAR reanalysis from 2004 to 2006 is investigated. Model MLD compares well with the ~20,000 observations from Argo floats and a TRITON buoy (1.5°S and 90°E) in the Indian Ocean. Tests with a one-dimensional upper ocean model were conducted to assess the impact on the MLD simulations that would result from the lack of the diurnal cycle in the forcing applied to the OGCM. The error was of the order of ~12 m. MLD at the TRITON buoy location shows a bimodal pattern with deep MLD during May–June and December–January. MLD pattern during fall 2006 was significantly different from the climatology and was rather shallow during December–January both in the model and observation. An examination of mixed layer heat and salt budget suggested salinity freshening caused by the advective and vertical diffusive mixing to be the cause of shallow MLD.  相似文献   

5.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

6.
《Oceanologica Acta》1999,22(5):453-471
Hydrographic data were collected from 3 to 10 September 1996 along two transects; one at 18° N and the other at 90° E. The data were used to examine the thermohaline, circulation and chemical properties of the Bay of Bengal during the withdrawal phase of the southwest monsoon. The surface salinity exhibited wide spatial variability with values as low as 25.78 at 18° N / 87° E and as high as 34.79 at 8° N / 90° E. Two high salinity cells (S > 35.2) were noticed around 100 m depth along the 90° E transect. The wide scatter in T-S values between 100 and 200 m depth was attributed to the presence of the Arabian Sea High Salinity (ASHS) water mass. Though the warm and low salinity conditions at the sea surface were conducive to a rise in the sea surface topography at 18° N / 87° E, the dynamic height showed a reduction of 0.2 dyn.m. This fall was attributed to thermocline upwelling at this location. The geostrophic currents showed alternating flows across both the transects. Relatively stronger and mutually opposite currents were noticed around 25 m depth across the 18° N transect with velocity slightly in excess of 30 cm s−1. Similar high velocity (> 40 cm s−1) pockets were also noticed to extend up to 30 m depths in the southern region of the 90° E transect. However, the currents below 250 m were weak and in general < 5 cm s−1. The net geostrophic volume transports were found to be of the order of 1.5 × 106 m3 s−1 towards the north and of 6 × 106 m3 s−1 towards west across the 18° N and 90° E transects respectively. The surface circulation patterns were also investigated using the trajectories of drifting buoys deployed in the eastern Indian Ocean around the same observation period. Poleward movement of the drifting buoy with the arrival of the Indian Monsoon Current (IMC) at about 12° N along the eastern rim of the Bay of Bengal has been noticed to occur around the beginning of October. The presence of an eddy off the southeast coast of India and the IMC along the southern periphery of the Bay of Bengal were also evident in the drifting buoy data.  相似文献   

7.
The annual subduction rate in the South Indian Ocean was calculated by analyzing Simple Ocean Data Assimilation(SODA) outputs in the period of 1950–2008. The subduction rate census for potential density classes showed a peak corresponding to Indian Ocean subtropical mode water(IOSTMW) in the southwestern part of the South Indian Ocean subtropical gyre. The deeper mixed layer depth, the sharper mixed-layer fronts and the associated relatively faster circulation in the present climatology resulted in a larger lateral induction, which primarily dominants the IOSTMW subduction rate, while with only minor contribution from vertical pumping.Without loss of generality, through careful analysis of the water characteristics in the layer of minimum vertical temperature gradient(LMVTG), the authors suggest that the IOSTMW was identified as a thermostad, with a lateral minimum of low potential vorticity(PV, less than 200×10~(–12) m~(–1)·s~(–1)) and a low d T?dz(less than 1.5°C/(100m)). The IOSTMW within the South Indian Ocean subtropical gyre distributed in the region approximately from25° to 50° E and from 30° to 39°S. Additionally, the average characteristics(temperature, salinity, potential density)of the mode water were estimated about(16.38 ± 0.29)°C,(35.46 ± 0.04),(26.02 ± 0.04) σ_θ over the past 60 years.  相似文献   

8.
用59年Ishii再分析温度资料,讨论了热带西南印度洋(SWTIO)上升流区的季节和年际变化以及与上升流区有关的温度距平的变化,同时分析了其与热带印太海气系统的关系,结果显示SWTIO 上升流在南半球冬、夏季比较强,春季最弱。它的范围在5°~1°S,在东西向从50°E可以伸展到90°E。该上升流区的变化与温跃层的温度距平有密切的关系,并存在明显的5 a振荡周期。SWTIO上升流区温度距平的5 a周期振荡是由热带东印度洋温度距平在最大垂直温度距平曲面(MTAL)上向西沿着11.5°~6.5°S传播过来的,它与热带太平洋的温度距平传播方式不同。SWTIO上升流是热带印太海气系统的一个重要组成部分,印度洋偶极子 超前SWTIO上升流区温度变化5个月,最大相关系数达到0.57,NINO3区指数超前SWTIO上升流区指数2个月达到0.49。当热带印太区域的大气风场改变,影响热带太平洋和印度洋表层SSTA,出现ENSO和DIPOLE,进一步向西传播到SWTIO次表层,导致SWTIO上升流区出现改变。  相似文献   

9.
A total of 25 surface sediment samples, collected along a North-South transect (from 9.69° N to 55.01° S and from 80° E and 40° E) in the south western Indian Ocean, were used to study the coiling direction patterns in foraminifera planktonic species Neogloboquadrina pachyderma, Globigerinita glutinata and Globigerina bulloides. Comparison between the coiling direction and mean proloculus size (MPS) revealed that all these profiles along N-S transect were not in tandem and thus indicated non-existence of any relationship between the coiling direction and reproductive modes expressed in terms of mean proloculus size.  相似文献   

10.
西风爆发、次表层暖水东移与厄尔尼诺现象   总被引:7,自引:2,他引:7       下载免费PDF全文
利用最近20 a的大气海洋资料,分析了厄尔尼诺事件与赤道太平洋西风异常以及赤道太平洋次表层海温之间的关系.结果表明,赤道西太平洋(5°S~5°N,120°~160°E)和赤道中东太平洋(5°S~5°N,160°E~160°W)西风异常都存在着与厄尔尼诺周期一致的年际变化,但前者还包含有显著的2~3个月季节内振荡.赤道西太平洋次表层冷暖水东移也呈现年和年际时间尺度的振荡周期.在厄尔尼诺发生前,赤道西太平洋次表层海水出现持续性增暖,赤道西太平洋西风异常频率加快,强度增强.随后赤道中太平洋(160°E~160°W)出现持续性(3个月以上)强西风异常(即西风爆发),并进一步向东扩展,同时次表层暖水沿着赤道波导东移到赤道东太平洋混合层,导致赤道东太平洋海表大面积异常增暖,形成一次厄尔尼诺现象.最后,模式模拟了1980~1984年赤道太平洋海温的变化,进一步证实了赤道纬向西风异常对暖水东移起着重要的作用.  相似文献   

11.
Understanding of the temporal variation of oceanic heat content(OHC) is of fundamental importance to the prediction of climate change and associated global meteorological phenomena. However, OHC characteristics in the Pacific and Indian oceans are not well understood. Based on in situ ocean temperature and salinity profiles mainly from the Argo program, we estimated the upper layer(0–750 m) OHC in the Indo-Pacific Ocean(40°S–40°N, 30°E–80°W). Spatial and temporal variability of OHC and its likely physical mechanisms are also analyzed. Climatic distributions of upper-layer OHC in the Indian and Pacific oceans have a similar saddle pattern in the subtropics, and the highest OHC value was in the northern Arabian Sea. However, OHC variabilities in the two oceans were different. OHC in the Pacific has an east-west see-saw pattern, which does not appear in the Indian Ocean. In the Indian Ocean, the largest change was around 10°S. The most interesting phenomenon is that, there was a long-term shift of OHC in the Indo-Pacific Ocean during 2001–2012. Such variation coincided with modulation of subsurface temperature/salinity. During 2001–2007, there was subsurface cooling(freshening)nearly the entire upper 400 m layer in the western Pacific and warming(salting) in the eastern Pacific. During2008–2012, the thermocline deepened in the western Pacific but shoaled in the east. In the Indian Ocean, there was only cooling(upper 150 m only) and freshening(almost the entire upper 400 m) during 2001–2007. The thermocline deepened during 2008–2012 in the Indian Ocean. Such change appeared from the equator to off the equator and even to the subtropics(about 20°N/S) in the two oceans. This long-term change of subsurface temperature/salinity may have been caused by change of the wind field over the two oceans during 2001–2012, in turn modifying OHC.  相似文献   

12.
南印度洋是海洋中尺度涡的多发区域。本文利用卫星高度计资料及Argo浮标资料,对南印度洋(10°~35°S, 50°~120°E)区域中尺度涡的分布、表观特征等进行了统计分析,采用合成方法,构建了该区域中尺度涡的三维温盐结构。结果表明,涡旋频率呈明显的纬向带状分布,在18°~30°S存在一个明显的涡旋频率带状高值区;涡旋半径具有由南至北逐渐增大的趋势;长周期涡旋在其生命周期内,半径、涡动能、涡能量密度、涡度等性质均经历了先增大而后减小的过程;涡旋以西向运动为主,在经向上移动距离较小,长周期气旋(反气旋)涡具有明显的偏向极地(赤道)移动的倾向;涡旋平均移动速度为5.9 cm/s,速度大小大致沿纬向呈带状分布。在混合层以下,气旋涡(反气旋涡)内部分别呈现明显的温度负(正)异常,且分别存在两个位温负(正)异常的冷(暖)核结构;气旋涡(反气旋涡)整体上呈现"正-负"("负-正")上下层相反的盐度异常结构。中尺度涡对温盐的平均影响深度可达1 000×104 Pa以上。  相似文献   

13.
Sea surface temperature (SST) isoline charts that were manually mapped using in situ SST data and satellite-derived SST data are valuable because they incorporate oceanographers’ knowledge and experience. This type of SST data is useful for studying sea conditions of an area, for analyzing environmental factors that could affect fishing grounds, as a parameter for atmospheric or oceanic models, or as a diagnostic tool for comparison with the SSTs produced by ocean models. However, isoline maps must be digitized and interpolated into grid data in order to be used in these applications. Herein, we propose a coupled interpolation (CI), which couples improved multi-section interpolation and single-point change surface interpolation containing orientation, for generating grid data from SST isolines. We interpolated 1049 SST isoline maps (temperature interval 1°), which cover an area of the northwestern Pacific Ocean (125°E–180°E, 26°N–50°N) and were published by the Japan Fisheries Information Service Center (JAFIC) during 1990–2000, to grid datasets with 15′ grid resolution. We assessed the quality of grid datasets by checking noise points, RMSE analysis, checking offset errors, retrieving percentage of Kuroshio axes and visually comparing inverse isotherms with original isotherms. The quality analysis and comparison with four other interpolators showed the CI interpolator to be a good technique for generating SST grid data from isotherms. We also computed the SST anomaly (SSTA) using the SST grid datasets. The amplitude values of integral SSTA in the area of 31–46°N, 170–180°E were low, whereas they were high in the SW–NE rectangular area of 35–46°N, 142–160°E.  相似文献   

14.
太平洋内部副热带-热带经向翻转环流(subtropical-tropical cell,STC)是连接热带和副热带的海洋通道.由于以往海洋观测资料的匮乏,前人多利用海洋模式数据进行研究,且仅限于沿单一纬度上的STC的分析,较少涉及沿不同纬度的STC的季节变异规律.利用地转海洋学实时观测阵(array for real-...  相似文献   

15.
赤道印度洋中部断面东西水交换的季节变化及其区域差异   总被引:4,自引:2,他引:2  
采用海洋再分析资料和实测资料研究了热带印度洋中部东西水交换特征。结果表明存在两个相互独立的过程,即北印度洋过程(4°~6°N)和赤道过程(2°S-2°N)。北印度洋过程受季风影响显著,11月至翌年3月冬季风期间表现出很强的低盐水向西输送,5-9月夏季风期间则为高盐水向东输送;由于冬季风期间的输送较强,年平均表现为低盐水向西输送。赤道过程分为表层过程和次表层过程。表层赤道过程受局地风场驱动,有明显的半年周期;4-5月和10-11月的东向流将赤道西印度洋的高盐水向东输送,其余月份相反;向东的输送较强,年平均表现为净高盐水向东输送。在次表层赤道过程没有明显的季节变化,海流全年一致向东,将海盆西部的高盐水向东输送。  相似文献   

16.
The horizontal distribution of the near-surface (neuston) copepods of the family Pontellidae was studied on the meridional transects through the central part of the Indian ocean between 12°N and 12°S and in the Bay of Bengal in the summer monsoon period. Eleven species of neuston pontellids were found. The common species Labidocera detruncate and Pontellopsis villosa have the sane high frequencies in the central part of the ocean and in the Bay of Bengal. Some species are rarer in the Bay of Bengal than in the central part of the ocean. In contrast, other species are more frequent in the Bay of Bengal. The special traits of the distribution in the Bay of Bengal coincide with the lower salinity in the bay than in the central ocean. The distribution of some neritic species from the Bay of Bengal to the south is dependent on the intensification of the water translocation to the south in the summer. In the central part of the Indian Ocean, the distribution of the common neustonic pontellids is similar in the periods of the summer and winter monsoons. It is the result of the occupation of the region by the same equatorial water masses.  相似文献   

17.
Teleconnection between El Nino/La Nina-Southern Oscillation (ENSO) phenomenon and anomalous Antarctic sea-ice variation has been studied extensively.In this study,impacts of sea surface temperature in the Indian Ocean on Antarctic sea-ice change were investigated during Janaury 1979 and October 2009.Based on previous research results,sea areas in the western Indian Ocean (WIO;50°–70°E,10 °–20 °S) are selected for the resreach.All variables showed 1-10 year interannual timescales by Fast Founer Tranaform (FFT) transformation.Results show that i) strong WIO signals emerged in the anomalous changes of Antarctic sea-ice concentration;ii) significant positive correlations occurred around the Antarctic Peninsula,Ross Sea and its northwest peripheral sea region iii) negative correlation occurred in the Indian Ocean section of the Southern Ocean,Amundsen Seas,and the sea area over northern Ross Sea;and iv) the atmospheric anomalies associated with the WIO including wind,meridional heat flux,and surface air temperature over southern high latitudes were the possible factors for the teleconnection.  相似文献   

18.
The objective of the paper is to use the data collected along two meridional sections (45° E and 57°30′ E) during the austral summer (January–March) 2004 to understand the influence of seabed topography across the Madagascar and Southwest Indian Ridges on hydrographic parameters. The study was supplemented by World Ocean Circulation Experiment (WOCE) Conductivity-Temperature-Depth data collected during February–March 1996 along 30° E, as well as Levitus climatology. A southward shift of 2° latitude (between 45° E and 57°30′ E) was recorded for the two predominant frontal structures, i.e., the Agulhas Return Front and Southern Subtropical Front, which is attributed to the influence of seabed topography on hydrographic parameters. No significant spatial variation of these fronts was noted between the 30° E and 45° E meridional sections. Between latitudes 31° S and 42° S, the temperature and salinity structures show deepening over the ridges. The Antarctic Circumpolar Current core was detected between 40°15′ S and 43° S.  相似文献   

19.
The in situ sea surface salinity(SSS) measurements from a scientific cruise to the western zone of the southeast Indian Ocean covering 30°–60°S, 80°–120°E are used to assess the SSS retrieved from Aquarius(Aquarius SSS).Wind speed and sea surface temperature(SST) affect the SSS estimates based on passive microwave radiation within the mid- to low-latitude southeast Indian Ocean. The relationships among the in situ, Aquarius SSS and wind-SST corrections are used to adjust the Aquarius SSS. The adjusted Aquarius SSS are compared with the SSS data from My Ocean model. Results show that:(1) Before adjustment: compared with My Ocean SSS, the Aquarius SSS in most of the sea areas is higher; but lower in the low-temperature sea areas located at the south of 55°S and west of 98°E. The Aquarius SSS is generally higher by 0.42 on average for the southeast Indian Ocean.(2) After adjustment: the adjustment greatly counteracts the impact of high wind speeds and improves the overall accuracy of the retrieved salinity(the mean absolute error of the Zonal mean is improved by 0.06, and the mean error is-0.05 compared with My Ocean SSS). Near the latitude 42°S, the adjusted SSS is well consistent with the My Ocean and the difference is approximately 0.004.  相似文献   

20.
印度洋金枪鱼延绳钓渔业作为我国重要的远洋渔业之一,探究其渔场时空变动及与环境因子之间的关系十分必要。本文根据2016年1—6月收集的印度洋金枪鱼渔业生产数据,并结合卫星遥感获取的环境因子数据,运用ArcGIS和GAM模型分析了印度洋大眼金枪鱼和黄鳍金枪鱼渔场时空变动及与环境因子之间的关系。研究结果表明:大眼金枪鱼和黄鳍金枪鱼1—6月CPUE均呈现先减小后增加的趋势,4月均达最高值,分别为2.45尾/千钩和3.56尾/千钩,各月CPUE均存在显著性差异(P<0.001);大眼金枪鱼和黄鳍金枪鱼渔场时空变动基本趋于一致,均为先向东北移动,后向西北移动,最后再向东北移动的趋势;GAM模型分析显示,大眼金枪鱼CPUE与模型因子的解释率为32.1%,纬度和250 m水深温度影响最显著,黄鳍金枪鱼CPUE与模型因子的解释率为37.2%,200 m水深温度影响最显著;协同分析表明,1—6月,印度洋金枪鱼延绳钓中心渔场分布于1°S~9.5°N,47°~64°E,且海表温度在29.3~30.8℃的海域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号