首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamic importance of the Southern Indian Ocean (SIO) lies in the fact that it connects the three major world oceans: the Pacific, Atlantic, and Indian Oceans. Modeling study has been used to understand the circulation pattern of this very important region. Simulation of SIO (10°N–60°S and 30°E–120°E) is performed with z-coordinate Ocean General Circulation Model (OGCM) viz; MOM3.0 and the results have been compared with observed ship drift data. It is found that except near coastal boundaries and in equatorial region, the simulated current reproduce most well known current pattern such as Antarctic Circumpolar Current (ACC), South Equatorial Current (SEC) etc. and bears a resemblance to that of the observed data; however the magnitude of the surface current is weaker in model than the observed data, which may be due to deficiency in the forcing field and boundary condition and problem with observed data. The annual mean wind stress curl computed over the oceanic domain reveals about ACC and its similar importance. The way in which the ocean responds to the windstress and vertically integrated transport using model output is fascinating and rather good.  相似文献   

2.
Ocean Model Simulation of Southern Indian Ocean Surface Currents   总被引:1,自引:0,他引:1  
The dynamic importance of the Southern Indian Ocean (SIO) lies in the fact that it connects the three major world oceans: the Pacific, Atlantic, and Indian Oceans. Modeling study has been used to understand the circulation pattern of this very important region. Simulation of SIO (10°N-60°S and 30°E-120°E) is performed with z-coordinate Ocean General Circulation Model (OGCM) viz; MOM3.0 and the results have been compared with observed ship drift data. It is found that except near coastal boundaries and in equatorial region, the simulated current reproduce most well known current pattern such as Antarctic Circumpolar Current (ACC), South Equatorial Current (SEC) etc. and bears a resemblance to that of the observed data; however the magnitude of the surface current is weaker in model than the observed data, which may be due to deficiency in the forcing field and boundary condition and problem with observed data. The annual mean wind stress curl computed over the oceanic domain reveals about ACC and its similar importance. The way in which the ocean responds to the windstress and vertically integrated transport using model output is fascinating and rather good.  相似文献   

3.
对印度洋海表温度(SST)的主要特征及变化趋势进行分析,并研究了其与印度夏季季风降水(ISMR)和季风环流的关系,揭示出:从北印度洋到南半球中高纬度印度洋,SST最显著的变化模态是全海盆一致的变化,近50 a来总体趋势是上升的,在1976,1986年以及1996年间分别有一次跳跃性增温,与太平洋SST变化趋势基本一致.除了长期变化趋势外,南印度洋中高纬度比热带地区有更显著的模态分布.在印度洋SST升温的背景下,ISMR具有逐渐减少的趋势,但两者相关较弱.印度洋SST发生跳跃后的不同阶段,许多海区SST与ISMR相关均发生变化,但在春季,热带外南印度洋具有一对相对稳定区,其分布与EOF分析的第2模态相似.根据它们的分布,文中定义了春季南半球偶极子(SIOD),在正SIOD(PSIOD)情况下印度降水偏多,而负SIOD(NSIOD)则反之.环流分析表明,PSIOD(NSIOD)通过与大气的相互作用,对夏季马斯克林高压具有增强(减弱)作用,进而使得索马里越赤道气流增强(减弱),在印度地区低空产生异常的辐合(辐散),高层辐散(辐合),从而影响印度季风环流,使得印度季风降水偏多(少).  相似文献   

4.
High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly(MSLA) weekly files with a resolution of(1/3)° in both Latitude and Longitude for the period 1993–2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2,Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s.Anomalous field is quite significant in the western part between 20° and 40°E and in the eastern part between 80°E and 100°E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also,the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993–2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.  相似文献   

5.
Mesoscale eddies constitute the most energetic component of the variability of ocean currents. An attempt has been made for the detection of oceanic mesoscale eddy signatures over the Southern Indian Oceanic (SIO) regions using the dynamic topography derived from TOPEX/POSEIDON (T/P) altimeter data, by the signal processing technique, called matched filtering. After applying all the ocean and atmospheric corrections, data of a complete cycle of T/P over SIO has been used for detection of eddy signatures. The geoid undulations are removed from the data of corrected sea surface height from T/P and the resulting dynamic topographic data are passed through a matched filter designed to detect a generic eddy signature of Gaussian signal embedded in noise. The filter is optimized to detect eddies with amplitude 20 to 30 cm and diameters roughly 100?250 km. Out of all the analyzed data of T/P orbits over SIO a few examples are presented for brevity. Qualitative verification of eddies is done with some independent T/P sea level anomaly data over the region. The analysis shows that the matched filtering technique is most suitable for monitoring eddy signatures along the subsatellite track instantly over the remote and most hostile regions of the southern global oceans.  相似文献   

6.
南印度洋偶极子及其影响研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
回顾了对南印度洋副热带海气相互作用的研究,总结了南印度洋偶极子事件背景下的气候变化。印度洋海表温度的方差表明南印度洋是整个印度洋海温变率最强的区域,年际海温变化最显著的特征就是海温呈现西南—东北向的偶极子型分布,被称为南印度洋偶极子(Southern Indian Ocean Dipole, SIOD)。南印度洋海温偶极子的形成主要是受大尺度大气环流调整的影响。南印度洋副热带反气旋环流异常引起了印度洋热带东风异常和副热带西风异常的变化,影响了潜热通量、上升流和Ekman热输送,进而引起了海温变化。SIOD对热带和热带外大气环流也有影响,尤其会影响亚洲夏季风降水异常,例如我国的降水异常和南印度洋偶极子海温异常具有显著相关关系。此外,SIOD模态所引起的经向环流异常与南海、菲律宾地区的反气旋环流异常也有紧密联系。  相似文献   

7.
Nitrous oxide (N2O) distribution patterns in the Bering Sea basin (BSB) and Indian Sector of the Southern Ocean (ISSO) were described and compared. In both sites, the waters were divided into four layers: surface layer, subsurface layer, N2O maximum layer, and deep water. Simulations were made to find out the most important factors that regulate the N2O distribution patterns in different layers of both sites. The results showed that in the surface water, N2O was more understaturated in the ISSO than the BSB. This phenom- enon in the surface water of ISSO may result from ice melt water intrusion and northeastward transport of the Antarctic surface water. Results of the rough estimation of air-sea fluxes during the expedition were (-0.34±0.07)-(-0.64±0.13) μmol/(m2·d) and (-1.47±0.42)-(-1.77±0.51) μmol/(m-2·d) for the BSB and the ISSO, respectively. Strongly stratified surface layer and temperature minimum layer restricted exchange across the thermocline. The N2O maximum existed in higher concentration and deeper in the BSB than the ISSO, but their contribution to the upper layer by eddy diffusions was negligible. In deep waters, a concentration difference of 5 nmol/L N2O between these two sites was found, which suggested that N2O production occurred during thermohaline circulation. N2O may be a useful tracer to study important large-scale hydrographic processes.  相似文献   

8.
Dissolved and particulate samples were collected to study the distribution of thorium isotopes (234Th, 232Th and 230Th) in the water column of the Indian sector of the Southern Ocean (from 42°S to 47°S and from 60°E to 66°E, north of the Polar Front) during Austral summer 1999. Vertical profiles of excess 230Th (230Thxs) increases linearly with depth in surface water (0–100 m) and a model was applied to estimate a residence time relative to the thorium scavenging (τscav). Low τscav in the Polar Front Zone (PFZ) are found, compared to those estimated in the Subtropical Front Zone (STZ). Changes in particle composition between the PFZ and STZ could influence the 230Thxs scavenging efficiency and explain this difference. An innovative coupling between 234Th and 230Thxs was then used to simultaneously constrain the settling velocities of small (0.6–60 μm) and large (above 60 μm) particles. Although the different hydrological and biogeochemical regimes visited during the ANTARES IV cruise did not explain the spatial variation of sinking velocity estimates, our results indicate that less particles may reach the seafloor north (60 ± 2 m d− 1, station 8) than south of the Agulhas Return Current (119 ± 23 and 130 ± 5 m d− 1 at stations 3 and 7, respectively). This information is essential for understanding particle transport and by extension, carbon export. In the deep water column, the 230Thxs concentrations did not increase linearly with depth, probably due to lateral transport of North Atlantic Deep Water (NADW) from the Atlantic to the Indian sector, which renews the deep waters and decreases the 230Thxs concentrations. A specific 230Thxs transport model is applied in the deep water column and allows us to assess a “travel time” of NADW ranging from 2 to 15 years.  相似文献   

9.
印度洋偶极子及其可预报性研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
主要介绍印度洋偶极子(IOD)的时空特征、演变机制和可预报性的研究进展。IOD是东西热带印度洋反相的海温异常,是热带印度洋的年际海温变率最主要的两种异常结构之一。关于IOD的演变机制,特别是ENSO在其中所起作用,一直是学界争论的热点。一些学者认为,IOD是ENSO通过遥相关作用对热带印度洋造成的影响;另一些学者则认为,IOD是热带印度洋内部海气振荡的产物。本研究重点讨论这两种观点的相关证据以及IOD与ENSO的关系。此外,现有多数模式对IOD的预报时效小于3~4个月,潜在的预报时效则大于5个月,但这些对IOD的可预报性研究尚处于起步阶段,还有很大发展空间。  相似文献   

10.
11.
1 IntroductionThe South Indian Ocean is the only way which must be passed in marine traffic among Africa, Asia and Oceania. With the development of the international traffic, it becomes more and more frequent to navigate over the South Indian Ocean. More and more hydrometeorological safeguards especially the safeguards of important cruise lines are required. However, data for the region in China is absent except the Indian Ocean Climate Atlas (1973)[1] which has short fixed number of…  相似文献   

12.
依托中国第36次南极科学考察,利用船载走航气溶胶及气体组分在线分析仪对南大洋大气中气态和颗粒态有机胺进行了在线观测。获得了南大洋开阔海域及普里兹湾大气中高分辨气态和颗粒态有机胺的组成及分布,并对其来源特征进行了分析。结果表明:南大洋大气有机胺以气态三甲胺(TMA)和二甲胺(DMA)为主要存在形态,其均值分别为(104.0±285.2)、(3.5±6.0) ng/m3。普里兹湾大气中有机胺的平均浓度显著高于南大洋开阔海域,气态TMA和DMA均值分别达到(289.0±396.6)、(5.6±16.1) ng/m3。南大洋大气中气态TMA、DMA和氨气(NH3)在不同区域内均具有良好的线性关系,表明三者具有同源性。从来源分析,南大洋大气有机胺主要受到海洋生物活动的影响,但在海冰边缘区及南极近岸海域,企鹅等动物的生物活动会导致大气中有机胺的浓度显著升高。  相似文献   

13.
南印度洋海浪场时空特征分析   总被引:1,自引:0,他引:1  
根据 1950 —1995 年共 46 a 的南印度洋船舶气象报资料,按 5°× 5°网格统计的海浪要素进行分析研究。通过分析每月各要素的等值线分布图,得出南印度洋海浪场季节变化特点不如北半球各大洋显著,但仍有较明显的季节变化,只是季节性差异较小,冬季比夏季海浪强盛,相应的平均波高、大浪大涌频率也较大;盛行风浪传播方向、涌浪传播方向基本一致,10°S 以北为季风气候区,而其它海域则信风区常年盛行 SE 向浪,40°S 以南盛行偏 W 向浪。本文提供了南印度洋海域较为翔实的海浪场资料及变化规律。  相似文献   

14.
南黄海海面大气长波辐射计算方法的比较   总被引:3,自引:0,他引:3  
利用了"中国近海海洋综合调查与评价"项目在南黄海区获得的海-气通量观测资料,对一些常用的计算海面大气长波辐射通量的经验公式进行了比较.结果表明,采用Clark和Josey各自提出的经验公式所得的计算结果与实测结果具有较好的一致性;而利用Bignami和Bunker提出的经验公式计算的海面大气长波辐射通量值与实测资料则存在着较大的误差.出现差别的原因可能与不同经验公式所选参数密切相关.  相似文献   

15.
本文根据多年的天气图、卫星云图以及1980~1990年的NCEP再分析资料,通过统计分析和合成分析等方法建立了能够在南印度洋特定海区引起12m/s以上大风天气的高纬低压系统概念模型,并对主要的南印度洋西部副高型、南印度洋倒"品"字型作了详细的阐述。该天气概念模型主要发生在南半球的冬、春季。(1)南印度洋西部副高天气过程多由高纬度低压系统发展引起。在这一过程中,副高与高纬低压系统由纬向型向经向型转变,海平面气压槽和850hPa高度槽受到槽后冷平流的驱动不断向东北方向移动,并扫过南印度洋东部。(2)南印度洋倒"品"字天气模型中,低压槽受斜压系统的驱动东移并发展加深,与南印度洋东部的副高中心之间形成大风带。该天气概念模型的建立对南印度洋海区大风的预报可起到一定指导作用。  相似文献   

16.
The accurate surface wind in the equatorial Indian Ocean is crucial for modeling ocean circulation over this region. In this study, the surface wind analysis generated at the European Center for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) are compared with NASA QuikSCAT satellite derived Level2B (swath level) and Level3 (gridded) surface winds for the year 2005. It is observed that the ECMWF winds exhibit speed bias of 1.5 m/s with respect to QuikSCAT Level3 in the southern equatorial Indian Ocean. The NCEP winds are found to exhibit speed bias (1.0–1.5 m/s) in the southern equatorial Indian Ocean specifically during January–February 2005. The biases are also observed in the analysis when compared with Level2B product as well; however, it is less in comparison to Level3 products. The amplitude of daily variations of both ECMWF and NCEP wind speed in Bay of Bengal and parts of the Arabian Sea is about 80% of that in QuikSCAT, while in the equatorial Indian Ocean it is about 60% of that of QuikSCAT.  相似文献   

17.
Teleconnection between El Nino/La Nina-Southern Oscillation (ENSO) phenomenon and anomalous Antarctic sea-ice variation has been studied extensively.In this study,impacts of sea surface temperature in the Indian Ocean on Antarctic sea-ice change were investigated during Janaury 1979 and October 2009.Based on previous research results,sea areas in the western Indian Ocean (WIO;50°–70°E,10 °–20 °S) are selected for the resreach.All variables showed 1-10 year interannual timescales by Fast Founer Tranaform (FFT) transformation.Results show that i) strong WIO signals emerged in the anomalous changes of Antarctic sea-ice concentration;ii) significant positive correlations occurred around the Antarctic Peninsula,Ross Sea and its northwest peripheral sea region iii) negative correlation occurred in the Indian Ocean section of the Southern Ocean,Amundsen Seas,and the sea area over northern Ross Sea;and iv) the atmospheric anomalies associated with the WIO including wind,meridional heat flux,and surface air temperature over southern high latitudes were the possible factors for the teleconnection.  相似文献   

18.
本文根据多年的天气图、卫星云图以及1980~1990年的NCEP再分析资料,通过统计分析和合成分析等方法建立了能够在南印度洋特定海区引起12m/s以上大风天气的中高纬气旋型天气概念模型,井对该天气概念模型作了详细的阐述.该天气概念模型主要发生在南半球的冬季和初春,在该模型中,气旋从高纬低压中分裂出来,快速东移赶上位于其东部的高位低压并发展至其北部.气旋冷锋最终在南印度洋东部引起大风.该天气概念模型的建立对南印度洋海区大风的预报可起到一定指导作用.  相似文献   

19.
This paper examines the mechanism controlling the short time-scale variation of sea ice cover over the Southern Ocean. Sea ice concentration and ice velocity datasets derived from images of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) are employed to reveal this mechanism. The contribution of both dynamic and thermodynamic processes to the change in ice edge location is examined by comparing the meridional velocity of ice edge displacement and sea ice drift. In the winter expansion phase, the thermodynamic process of new ice production off the ice edge plays an important role in daily advances of ice cover, whereas daily retreats are mostly due to southward ice drift. On the other hand, both advance and retreat of ice edges in the spring contraction phase are mostly caused by the dynamic process of the ice drift. Based on the above mechanism and the linear relation between the degree of ice production at the ice edge and northward wind speed, the seasonal advance of ice cover can be roughly reproduced using the meridional velocity of ice drift at the ice edge.  相似文献   

20.
基于WOA18(World Ocean Atlas)温盐数据集,分析印度洋等密度面的气候态分布,而后选取1985—1994年、1995—2004年和2005—2017年3个时段,分析等密度面的年代际变化。研究给出了11个等密度面深度的气候态分布,其中σ0=26.00 kg/m3的等密度面(参考压强为0 dbar)在 40°S附近露头,随着位势密度的增大,等密度面露头区逐渐南移直至消失;位势密度大于σ0=26.95kg/m3且小于等于σ2=37.00kg/m3的等密度面最深处均位于马达加斯加南侧,在北印度洋的深度变化不大。重点分析了σ0=26.00 kg/m3,σ1=31.87 kg/m3(参考压强为1 000 dbar),σ2=36.805 kg/m3(参考压强为2 000 dbar)3个等密度面深度和盐度的年代际变化,研究表明两者均存在显著的年代际变化。对于σ0=26.00kg/m3等密度面,深度先变浅后加深,年代际变化主要位于30°S—40°S(等密度面深度快速变化区);等密度面盐度在1995—2004年和1985—1994年的差异与2005—2017年和1995—2004年的差异中基本呈现相反的变化。 σ1=31.87kg/m3σ2=36.805kg/m3的等密度面深度年代际变化都集中于40°S—50°S海域;总体上盐度的年代际变化前者表现为减小,后者表现为增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号