首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Shelf-edge deltas (SEDs) forming during periods of relative sea level fall and lowstand are generally efficient in transferring sediments to the slope and basins, and their identification in subsurface data is often considered a good indication of coeval development of slope and basin-floor turbidite reservoirs. This study investigates the seismic stratigraphic evolution of a forced-regressive and normal regressive shelf-edge delta (Bonaparte SED) that accumulated on the edge of the NW Australian margin during the late Quaternary. High resolution 2D and 3D reflection seismic data allow reconstruction of the main episodes of delta progradation and understanding of the extrinsic and intrinsic controls on their deposition. The lack of a significant turbidite system forming off the shelf-edge delta throughout the Quaternary is a striking feature of the Bonaparte SED. Instead, slope sedimentation is dominated by the accumulation of plume-derived mud belts and their reworking through mass-transport processes. Seismic geomorphology permits interpretation of the process regime of the youngest shelf-edge depocentre by applying a new process-based shallow-marine classification scheme to the 3D seismic attribute data. Results suggest either a tide or wave dominated delta with fluvial processes being of tertiary significance. A tide or wave-dominated, fluvial-affected shelf-edge delta classification is consistent with the paleogeographical reconstruction of the margin during the last glacial maximum (ca. 25 ka BP). The comparison of this mixed-process shelf-edge delta and starved slope system with a fluvial-dominated counterpart with significant sandy slope deposits emphasizes the potential of assessing the process regime of shelf-edge deltas as a rapid, first approach for predicting the presence or absence of coeval slope and basin-floor reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号