首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
东海沿海季节性海平面异常成因   总被引:1,自引:0,他引:1  
Based on the analysis of sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2013, the causes of seasonal sea level anomalies in the coastal region of the East China Sea(ECS) are investigated. The research results show:(1) sea level along the coastal region of the ECS takes on strong seasonal variation. The annual range is 30–45 cm, larger in the north than in the south. From north to south, the phase of sea level changes from 140° to 231°, with a difference of nearly 3 months.(2) Monthly mean sea level(MSL)anomalies often occur from August to next February along the coast region of the ECS. The number of sea level anomalies is at most from January to February and from August to October, showing a growing trend in recent years.(3) Anomalous wind field is an important factor to affect the sea level variation in the coastal region of the ECS. Monthly MSL anomaly is closely related to wind field anomaly and air pressure field anomaly. Wind-driven current is essentially consistent with sea surface height. In August 2012, the sea surface heights at the coastal stations driven by wind field have contributed 50%–80% of MSL anomalies.(4) The annual variations for sea level,SST and air temperature along the coastal region of the ECS are mainly caused by solar radiation with a period of12 months. But the correlation coefficients of sea level anomalies with SST anomalies and air temperature anomalies are all less than 0.1.(5) Seasonal sea level variations contain the long-term trends and all kinds of periodic changes. Sea level oscillations vary in different seasons in the coastal region of the ECS. In winter and spring, the oscillation of 4–7 a related to El Ni?o is stronger and its amplitude exceeds 2 cm. In summer and autumn, the oscillations of 2–3 a and quasi 9 a are most significant, and their amplitudes also exceed 2 cm. The height of sea level is lifted up when the different oscillations superposed. On the other hand, the height of sea level is fallen down.  相似文献   

2.
Sea‐level data from two sites in northern New Zealand, along with the Southern Oscillation Index (SOI), are analysed for interannual and decadal variability using wavelets. The analysis shows, using statistically significant wavelet power, there is a significant relationship between mean sea level (MSL) and SOI. However, the relationship is highly variable, both in magnitude and in the range of time‐scales over which it occurs. This non‐stationarity necessitates the use of techniques such as wavelets for analysis. An interdecadal response in MSL around northern New Zealand has been isolated, with shifts occurring in 1950 and the late 1970s. This behaviour in MSL appears to coincide with shifts in the Pacific Decadal Oscillation, thought previously to be largely centred in the North Pacific. A strong correlation between SOI and sea surface temperature (SST) is also demonstrated. This relationship appears to be stable in magnitude (a large change in SOI produces a large change in SST) and to occur over the same range of time‐scales. More SST and MSL data are required for other parts of New Zealand to determine whether these findings apply elsewhere.  相似文献   

3.
New maps of the mean monthly distribution of chlorophyll and the primary production in the Kara Sea were compiled using joint processing of CZCS (1978–1986), SeaWiFS (1998–2005), and MODIS (2002–2006) satellite data and field measurements. The annual primary production of phytoplankton is estimated at 22.3 × 106 t of C per year or 70 mg of C/m2 per day. The results of the calculations of the organic carbon budget in the Kara Sea are presented.  相似文献   

4.
Since the 17th century, the Tonnarella of Camogli, a small tuna trap, has been used to catch pelagic fish along the western coast of the Portofino Promontory (Ligurian Sea, Northwestern Mediterranean). The availability of long‐term datasets on fish yields (1950–1974 and 1996–2011), with information related to the seawater temperatures and the North Atlantic Oscillation (NAO), has allowed us to study the qualitative and quantitative changes in fish yields in the last decade and the possible relationships with the seasonal anomalies of temperature that have occurred in the Ligurian Sea. In 1950–1974, yields remained relatively constant over time (average of 35.6 ± 8.7 t·year?1). From 1996 through 2011, yields were high (42.9 ± 15.9 t·year?1) but inconsistent with strong annual variability in catches. The primary catches are Seriola dumerili, Auxis rochei, Trachurus spp. and Sarda sarda. Changes in species composition have occurred as well: S. dumerili, Sardinella sp. and Belone belone have appeared recently. Moreover, a significant decrease in the boreal scombroid (Scomber scombrus) and an increase of warm‐temperate carangids and other typically Southern Mediterranean species such as Coryphaena hippurus and Sphyraena viridensis, appear to be linked to the warming of the surface water layer, particularly evident in the Ligurian Sea, for the last 10 years. The analysis of this kind of trend may be a powerful tool for assessing structural changes of the pelagic fish community in the Ligurian Sea (Northwestern Mediterranean).  相似文献   

5.
高君  暴景阳  刘聚 《海洋测绘》2019,39(3):6-10
验潮站观测的海面高度数据是监测海平面变化以及确定平均海面时常使用的重要基础观测信息,针对平均海面以及相对海平面变化速率在不同时段观测资料下结果的差异进行了分析,统计了不同时间尺度平均海面确定的差异,并设计了两组数据实验,具体讨论了不同年份19年观测以及观测时长逐年累加两种情况下,相对海平面变化速率确定结果的规律。实验结果表明,月平均海面具有明显的季节性变化,最大互差可达几十厘米,1年平均海面基本稳定,19年平均海面精度可达厘米级;利用19年的观测资料确定的相对海平面变化速率反映的观测时段内海平面的变化情况,各时段结果差异较大且可靠性较低;为获得稳定可靠的相对海平面变化速率,观测时长应至少涵盖两个潮汐变化周期。  相似文献   

6.
The Arctic Ocean is connected to the Pacific by the Bering Sea and the Bering Strait. During the 4th Chinese National Arctic Research Expedition, measurements of carbon tetrachloride (CCl4) were used to estimate ventilation time-scales and anthropogenic CO2 (Cant) concentrations in the Arctic Ocean and Bering Sea based on the transit time distribution method. The profile distribution showed that there was a high-CCl4 tongue entering through the Canada Basin in the intermediate layer (27.6?<?σθ?<?28), at latitudes between 78 and 85°N, which may be related to the inflow of Atlantic water. Between stations B09 and B10, upwelling appeared to occur near the continental slope in the Bering Sea. The ventilation time scales (mean ages) for deep and bottom water in the Arctic Ocean (~?230–380 years) were shorter than in the Bering Sea (~?430–970 years). Higher mean ages show that ventilation processes are weaker in the intermediate water of the Bering Sea than in the Arctic Ocean. The mean Cant column inventory in the upper 4000 m was higher (60–82 mol m?2) in the Arctic Ocean compared to the Bering Sea (35–48 mol m?2).  相似文献   

7.
宁德地区是我国受风暴潮影响较为严重的区域之一,同时也是宁德核电站等众多沿海大型工程所在地.鉴于该区域特殊的地理位置和海洋灾害的严重性,以宁德核电站为中心,对该区域所面临风暴潮风险的特征参数进行全面、综合的定量评估,包括潮汐特征、平均海平面变化、台风和风暴潮基本特征,特别是可能最大风暴潮的计算.研究结果表明,该区域10%超越频率的天文潮高、低潮位分别为355、-341 cm;平均海平面变化速率为0.162 cm/a;千年一遇的台风中心气压约为895h Pa,该气压时的最大台风风速半径为40 km.在进行大量敏感性实验的基础上,对台风移速、移向和风暴增水/减水的关系,以及增水和减水的差异就行了详细的研究,得出:台风增水主要是由移向在305°左右(295°~315°)、路过核电站下方(核电站以南)的台风引起,且增水随台风移速增大而增大;可能最大台风风暴增水由路径经过核电厂址南40 km的台风(移向295°、移速28 km/h)引起,最大台风增水值为526.8 cm;对于可能最大台风减水而言,最有利于台风风暴减水的移向在355°~360°和0°~15°之间,其中可能最大台风减水为-301.9 cm,由移向5°、移速30 km/h、路径经过核电厂址南30 km(0.75台风最大风速半径)的台风引起.  相似文献   

8.
Oxy-anionic species of V, As, Se, Mo, Sb, Te and W were measured in solution and suspension in samples obtained during several cruises in the Dutch Wadden Sea, the offshore region of the Southern Bight (North Sea) and in the estuaries of the Rhine and Scheldt. Dissolved concentrations at salinities above 34·5 × 10?3 ( = 34·5%. S) agreed generally well with published open ocean values. It is suggested that Se speciation differs from the open ocean.In the Wadden Sea, concentrations of V, Se, Mo and Sb were linearly related to salinity (10–35 × 10?3). The good agreement between measured and extrapolated values at a salinity of 0·5 × 10?3 suggests conservative behaviour in the Rhine estuary (with residence time of freshwater in the order of a few days).Dissolved concentration vs. salinity plots in the Scheldt estuary (residence time 2–3 months) showed pronounced minima and maxima. These occurred in the low or medium salinity range for V, As and Sb. Linear behaviour was observed for Se and Mo (in some cases, relatively large differences between cruises were detected). Deviations from linearity in the plots are interpreted in terms of thermodynamic equilibrium conditions involving species with different solubilities (V), local input from land (As, Se, Sb, Te) and removal from solution (As), probably through coprecipitation with Fe(OH)3.In the offshore samples, the contributions of particulate forms to the total element concentrations were small (<15%). At higher SPM concentrations (about 30 mg dm?3), this percentage remained small for Se, Mo and Sb (<15%); it was substantial for V and As (25–50%).  相似文献   

9.
基于区域潮汐场模型的水位控制可行性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
探讨了基于区域潮汐场模型的水位控制方法中的基准面确定问题,发现余水位控制方法在传递余水位的同时隐含了平均海面传递的事实,因而使区域各点与验潮站的平均海面处于同一历元,而深度基准面的确定误差是该方法的主要误差之一.根据渤海的某次水深测量作业,研究了区域深度基准面的精化,验证了平均海面的传递理论.最后分析了该方法存在的问题...  相似文献   

10.
Some organisms represent useful Biological Sea‐Level Indicators (Bio SLI) thanks to their constant position relative to sea level and allow the reconstruction of past sea level changes. The sessile gastropods Vermetidae are among the most used indicators, since their shells often resist time averaging and can be easily dated with 14C. However, all these vermetids have a level of precision (± 0.5–1 m), obtained from data on the Mediterranean Dendropoma petraeum (Monterosato, 1884). We found a certain degree of plasticity in this species; it can also live subtidally, not in correspondence with the main sea level, where it feeds adopting a mixed feeding strategy. Considering this variability and the almost complete lack of knowledge for other Bio SLI vermetids, it appears clear that a common value of precision cannot be maintained and the precision of other vermetid species remains to be tested.  相似文献   

11.
Torrey Pines State Beach, a site with large seasonal fluctuations in sand level, received a small shoreface beach fill (about 160,000 m3) in April 2001. The 600 m-long, flat-topped nourishment pad extended from a highway riprap revetment seaward about 60 m, terminating in a 2 m-tall vertical scarp. A 2.7 km alongshore span, centered on the nourishment region, was monitored prior to the nourishment and biweekly to monthly for the following 2 years. For the first 7 months after the nourishment, through fall 2001, significant wave heights were small, and the elevated beach fill remained in place, with little change near and above Mean Sea Level (MSL). In contrast, the shoreline accreted on nearby control beaches following a seasonal pattern common in southern California, reducing the elevation difference between the nourished and adjacent beaches. During the first winter storm (3 m significant wave height), the shoreline retreated rapidly over the entire 2.7 km survey reach, forming an alongshore-oriented sandbar in 3 to 4 m water depth [Seymour, R.J., Guza, R.T., O'Reilly, W., Elgar, S., 2004. Rapid erosion of a Southern California beach fill. Coastal Engineering 52 (2), 151–158.]. We show that the winter sandbar, most pronounced offshore of the nourishment, moved back onto the beach face during summer 2002 (following the usual seasonal pattern) and formed a wider beach above MSL at the site of the original nourishment than on the control beaches. Thus, the April 2001 shoreline nourishment was detectable until late fall 2002, persisting locally over a full seasonal cycle. In an extended 7-year time series, total sand volumes (summed between the back beach and 8 m water depth, over the entire 2.7 km reach) exhibit multi-year fluctuations of unknown origin that are twice as large as the nourishment volume.  相似文献   

12.
The life cycle of the stoloniferan Cornularia cornucopiae (Pallas, 1766) (Anthozoa: Octocorallia) was studied from March 2009 to October 2010 on the rocky cliff of the Conero Promontory (North Adriatic Sea, 43°34.865′ N, 13°34.320′ E). In this area the species showed unusual high densities never recorded in other sites of the Mediterranean Sea. The density trend of the species showed a marked seasonal cycle, with a winter minimum of about 1000 polyps m?2 and a summer maximum of about 30,000 polyps m?2. In accordance with other Mediterranean literature data, polyps were fertile during spring–summer, from March to August, but the number of eggs per polyp continuously decreased during this span of time. Variations of polyp density were strongly correlated to water temperature, which can be considered the main environmental factor triggering this seasonal behaviour. The possibility, for C. cornucopiae, to face adverse winter conditions is probably related to the presence of a characteristic perisarcal envelope covering the stolon and the calyx of each polyp, which isolates the living tissues from the exterior. During winter, polyps degenerate but the stolons remain dormant inside their envelopes. The perisarc covering represents a morphological convergence of C. cornucopiae with benthic hydrozoans. As the latter, the studied stoloniferans are able to live in habitats characterized by periodic favourable conditions thanks to a seasonal life strategy. A similar trend is shared also by other important components (cnidarians and some sponges) of the filter‐feeding community of the North Adriatic Sea. Differently to the Western Mediterranean basin, this area is characterized by high food availability all year around, so benthic organisms are strongly constrained by the very low winter temperatures.  相似文献   

13.
This paper discusses the long-term variation in the salinity of the Southern Yellow Sea Cold Water Mass (SYSCWM) and examines factors influencing the SYSCWM based on hydrographic datasets of the China National Standard section and the Korea Oceanographic Data Center. The mean salinity at the center of the SYSCWM showed a decreasing long-term trend. In empirical orthogonal function (EOF) analysis, the second EOF mode showed a similar long-term trend. The mean salinity of the center of the SYSCWM was related to the intrusion of saline water from the Yellow Sea Warm Current (YSWC), the salinity of the source area of the YSWC, the evaporation minus precipitation (E–P) flux, and discharge from the Changjiang River. The decreasing salinity trend to the southwest of Cheju Island produced a freshening trend in the YSWC, resulting in a reduction in the salinity of the SYSCWM. The freshening trends of the water from the northwest Pacific and the South China Sea were seen as the reason for the decreasing salinity trend from the intrusion of water into the Yellow Sea (YS). The freshwater flux influenced the surface salinity and was brought to deep layers by strong mixing in winter. The mean E–P flux signal and Changjiang River discharge signal lagged the first principal component of the SYSCWM by approximately 5 months.  相似文献   

14.
The trophic ecology, energy and reproductive states of the deep-water shrimp Aristaeomorpha foliacea, widely distributed along the slopes of the Mediterranean Sea Basins, were analysed in eight areas spread along ca. 3000 km in order to identify patterns in the habitat conditions supporting the species. From W to E the areas were situated between the north side of Eivissa (39°12′N, 1°20′E, in the Balearic Basin) and off Mersin, Turkey (36°15′N, 34°19′E, in the Levantine Sea). Trends identified mainly as a function of longitude from west to east were: (i) higher δ15N, parallel to δ15N shifts in the top 200 m of the water column for particulate organic N (Pantoja et al., 2002). The δ15N trend indicates that the deep trophic web, i.e. A. foliacea at 400–600 m, reflects the δ15N signal of the photic zone; (ii) a similar significant trend of δ13C, related with exploitation of pelagic versus benthic resources by A. foliacea in each area (i.e. by local variability of terrigenous inputs via submarine canyons). More depleted δ13C was found at mid-longitudes (Tyrrhenian Sea and Sicily Channel) linked to higher consumption of macroplankton prey (Pasiphaea spp., euphausiids and mesopelagic fishes). The feeding intensity (gut fullness, F) and prey diversity (J) of A. foliacea were related, according to generalized linear models, with the temperature and salinity of intermediate waters, variables in turn associated with latitude and longitude. Both F and J were higher in areas with greater shrimp density. The optimal ecological habitat of A. foliacea appears to be located in the Tyrrhenian Sea and the Sicily Channel, where we found the highest F, the greatest trophic diversity and A. foliacea in the best biological condition (i.e. with higher hepato-somatic index, HSI). These are also the areas with the highest densities of A. foliacea. In contrast, in the western Mediterranean Sea (Balearic Basin and the southern Balearic Islands), where A. foliacea has low densities, the shrimp showed generally lower values of trophic indicators and biological condition.  相似文献   

15.
In the Russian sector of the Gdansk Basin (Baltic Sea), high organic matter influx fuels microbial processes resulting in the formation of reduced sediments with elevated methane concentrations. Investigated areas of geoacoustic anomalies (~245 km2) were found to contain three distinct geomorphologic structures (pockmarks), with a total area of ~1 km2. Methane anomalies recorded in the water above one of these pockmarks were traced as high as 10 m above the bottom. In pockmark sediments, sulfate reduction and anaerobic oxidation of methane (AOM) occurred at high rates of 33 and 50 µmol dm?3 day?1, respectively. Integrated over 0–180 cm sediment depths, AOM exceeded methanogenesis almost tenfold. High AOM rates resulted from methane influx from deeper sediment layers. The δ13C signature of methane carbon (?78.1 to ?71.1‰) indicates the biogenic origin of pockmark methane. In pockmark sediments, up to 70% of reduced sulfur compounds was possibly produced via AOM.  相似文献   

16.
Data collected from hydrographic stations occupied within the Venezuelan and Columbian basins of the Caribbean Sea from 1922 through 2003 are analyzed to study the decadal variability of deep temperature in the region. The analysis focuses on waters below the 1815-m sill depth of the Anegada–Jungfern Passage. Relatively dense waters (compared to those in the deep Caribbean) from the North Atlantic spill over this sill to ventilate the deep Caribbean Sea. Deep warming at a rate of over 0.01 °C decade–1 below this sill depth appears to have commenced in the 1970s after a period of relatively constant deep Caribbean Sea temperatures extending at least as far back as the 1920s. Conductivity–temperature–depth station data from World Ocean Circulation Experiment Section A22 along 66°W taken in 1997 and again in 2003 provide an especially precise, albeit geographically limited, estimate of this warming over that 6-year period. They also suggest a small (0.001 PSS-78, about the size of expected measurement biases) deep freshening. The warming is about 10 times larger than the size of geothermal heating in the region, and is of the same magnitude as the average global upper-ocean heat uptake over a recent 50-year period. Together with the freshening, the warming contributes about 0.012 m decade–1 of sea level rise in portions of the Caribbean Sea with bottom depths around 5000 m.  相似文献   

17.
A method for the determination of barium in sea water was investigated using inductively coupled plasma emission spectrometry, and sea water samples from the Japan Sea and the Pacific Ocean were directly analyzed by this method. Artificial sea water was used to prepare matrix matched standard solutions to overcome the problem of physical interference. The detection limit (signal/noise ratio=2) for barium in deionized and distilled water was 0.08µg l?1 and in sea water, 0.12µg l?1. The reproducibilities in the purified water and in the sea water at the 10µg l?1 level were 0.7% a#FFFFFFnd 0.5%, respectively. The barium concentration in both the Japan Sea and the Pacific Ocean increased with depth and ranged between 5.5–10.0µg l?1 and 4.1–18.4µg l?1, respectively.  相似文献   

18.
Calculations were performed using a model of the combined circulation of the Atlantic Ocean (from 20° S), the Arctic Ocean, and the Bering Sea with a resolution of 0.25° by latitude and longitude for 1958–2006. The results are compared with observational data and results obtained by other models. Model estimates were obtained for the evolution of the Atlantic water inflow into the Arctic basin through the Fram Strait and the Barents Sea. Increased transports of Atlantic water inflow into the Arctic basin were found for the first half of the 1990s and 2004–2006. The relation between Atlantic water transports into the Arctic basin and variations in the North Atlantic oscillation is shown. A positive trend of Atlantic water inflow into the Arctic basin through the Fram Strait (0.061 Sv per year) was revealed. The evolution of the freshwater-layer thickness in the Beaufort Circulation (BC) is considered. There are three periods of its increased values combined with the increased anticyclonic vorticity of BC currents: the 1960s, the 1980s, and from 1999 until now. The model estimate for a statistical mean timescale of the cycle of freshwater concentration and sink from the BC is 16 years, which is close to currently existing estimates. The evolution of anticyclonic vorticity of currents leads the variations in the freshwater-layer thickness of the BC by 1.75 years. Since the mid-1970s, there have been long positive trends of both the freshwater-layer thickness and anticyclonic vorticity of currents in the BC. In the same time period, there has been a satellite-registered negative trend in the ice area in the Arctic, which was reproduced by the model.  相似文献   

19.
Studies have been performed on a transect along 130°30′ E from the Lena River delta (71°60′ N) to the continental slope and adjacent deepwater area (78°22′ N) of the Laptev Sea in September 2015. The structure of phytoplankton communities has distinct latitudinal zoning. The southern part of the shelf (southward of 73°10′ N), the most desalinated by riverine discharge, houses a phytoplankton community with a biomass of 175–840 mg/m2, domination of freshwater Aulacoseira diatoms, and significant contribution of green algae (both in abundance and biomass). The northern border for the distribution range of the southern complex of phytoplankton species lies between the 8 and 18 psu isohalines (~73°10′ N). The continental slope and deepwater areas of the Laptev Sea (north of 77°30′ N), with a salinity of >27 psu in the upper mixed layer, are populated by the community prevalently composed of Chaetoceros and Rhizosolenia diatoms, very abundant in the Arctic, and dinoflagellates. The phytoplankton number in this area fall in the range of 430–1100 × 106 cell/m2, and the biomass, in the range of 3600 mg/m2. A moderate desalinating impact of the Lena River discharge is observed in the outer shelf area between 73°20′ and 77°30′ N; the salinity in the upper mixed layer is 18–24 psu. The phytocenosis in this area has a mosaic spatial structure with between-station variation in the shares of different alga groups in the community, cell number of 117–1200 × 106 cells/m2, and a biomass of 1600–3600 mg/m2. As is shown, local inflow of “fresh” nutrients to the euphotic layer in the fall season leads to mass growth of diatoms.  相似文献   

20.
Primary production of phytoplankton and ice and under-ice flora of the Kara Sea and regions thereof has been assessed using region-specific models and MODIS-Aqua satellite data for 2002–2015. Average annual primary production of phytoplankton calculated for the growing season (April–October) amounted to 165 mg С m–2 day–1. Annual primary production of phytoplankton was 35 g C/m2. Annual primary production of phytoplankton in the entire Kara Sea was 13 × 1012 g C. Annual primary production of ice and underice flora calculated using an integrated biophysical model was 1.7 × 1012 g C, or 12% of total primary production of the Kara Sea; the ice cover dynamics and published data were taken into account for the calculations. The results have been compared to earlier primary production estimates for the Kara Sea. The extent of the increase in sea productivity during warming of the Arctic and the decrease in ice cover area are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号