首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
ABSTRACT

This study assesses the climate change impact on rainfall and drought incidents across Nigeria. Linear regression, Mann-Kendall tests and lag-1 serial correlation were adopted to analyse the trends and variability of rainfall and drought at 18 synoptic stations. Analysis of annual precipitation series indicates an increase in rainfall amounts at all stations, except Minna, Gusau and Yola. Seventeen of the 18 stations recorded at least one main drought period, between 1983 and 1987. A decreasing trend for the standardized precipitation index SPI-12 series was seen at Yola station, while the other stations showed an increasing trend. Also, Nigeria witnessed more annual rainfall totals but with high variability within the rainy months of the year in the first 15 years of the 21st century compared to the 20th century. Such variability in rainfall may have a significant effect on groundwater resources and the hydrology of Nigeria.  相似文献   

2.
ABSTRACT

This paper presents an analysis of trends in six drought variables at 566 stations across India over the period 1901–2002. Six drought variables were computed using standardized precipitation index (SPI). The Mann-Kendall (MK) trend test and Sen’s slope estimator were used for trend analysis of drought variables. Discrete wavelet transform (DWT) was used to identify the dominant periodic components in trends, whereas the significance of periodic components was examined using continuous wavelet transform (CWT) based global wavelet spectrum (GWS). Our results show an increasing trend in droughts in eastern, northeastern and extreme southern regions, and a decreasing trend in the northern and southern regions of the country. The periodic component influencing the trend was 2–4 years in south, 4–8 years in west, east and northeast, 8–64 years in central parts and 32–128 years in the north; however, most of the periodic components were not statistically significant.  相似文献   

3.
《水文科学杂志》2013,58(6):1114-1124
Abstract

Droughts may be classified as meteorological, hydrological or agricultural. When meteorological drought appears in a region, agricultural and hydrological droughts follow. In this study, the standardized precipitation index (SPI) was applied for meteorological drought analysis at nine stations located around the Lakes District, Turkey. Analyses were performed on 3-, 6-, 9- and 12-month-long data sets. The SPI drought classifications were modelled by Adaptive Neural-Based Fuzzy Inference System (ANFIS) and Fuzzy Logic, which has the advantage that, in contrast to most of the time series modelling techniques, it does not require the model structure to be known a priori. Comparison of the observed values and the modelling results shows a better agreement with SPI-12 and ANFIS models than with fuzzy logic models.  相似文献   

4.
It is expected that climate warming will be experienced through increases in the magnitude and frequency of extreme events, including droughts. This paper presents an analysis of observed changes and future projections for meteorological drought for four different time scales (1 month, and 3, 6 and 12 months) in the Beijiang River basin, South China, on the basis of the standardized precipitation evapotranspiration index (SPEI). Observed changes in meteorological drought were analysed at 24 meteorological stations from 1969 to 2011. Future meteorological drought was projected based on the representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, as projected by the regional climate model RegCM4.0. The statistical significance of the meteorological drought trends was checked with the Mann–Kendall method. The results show that drought has become more intense and more frequent in most parts of the study region during the past 43 years, mainly owing to a decrease in precipitation. Furthermore, long-term dryness is expected to be more pronounced than short-term dryness. Validation of the model simulation indicates that RegCM4.0 provides a good simulation of the characteristic values of SPEIs. During the twenty first century, significant drying trends are projected for most parts of the study region, especially in the southern part of the basin. Furthermore, the drying trends for RCP8.5 (or for long time scales) are more pronounced than for RCP4.5 (or for short time scales). Compared to the baseline period 1971–2000, the frequency of drought for RCP4.5 (RCP8.5) tends to increase (decrease) in 2021–2050 and decrease (increase) in 2051–2080. The results of this paper will be helpful for efficient water resources management in the Beijiang River basin under climate warming.  相似文献   

5.
This study presents spatio-temporal analysis of droughts in one of the most drought prone region in India–western Rajasthan and develops drought intensity-area-frequency curves for the region. The meteorological drought conditions are analyzed using 6-month standardized precipitation index (SPI-6) estimated at spatial resolution of 0.5° × 0.5°. Spatio-temporal analysis of SPI-6 indicates increase in frequency of droughts at the central part of the region. The non-parametric Mann–Kendall test for seasonal trend analysis showed increase in number of grids under drought during the study period. Further, bivariate frequency analysis of drought characteristics—intensity and areal extent is carried out using copula methods. For modeling joint dependence between drought variables, three copula families namely Gumbel-Hougaard, Frank and Plackett copulas are evaluated. Based on goodness-of-fit as well as upper tail dependence tests, it is found that the Gumbel-Hougaard copula best represents the drought properties. The copula-based joint distribution is used to compute conditional return periods and drought intensity–area–frequency (I–A–F) curves. The I–A–F curves could be helpful in risk evaluation of droughts in the region.  相似文献   

6.
While dendroclimatic studies have extended the knowledge of drought variations in Tien Shan, these have been almost exclusively based on tree-ring data from Tien Shan in China. We present a drought reconstruction for Almaty based on a tree-ring width chronology developed from sites of the Schrenk spruce in Tien Shan, Kazakhstan. The drought reconstruction, spanning AD 1785–2014, was developed by calibrating tree-ring series with the mean August to January standardized precipitation evapotranspiration index (SPEI). The drought reconstruction was verified with independent data and accounts for 41.9 % of the actual SPEI variance during the common period. The drought reconstruction compares well with some tree-ring-based drought/precipitation reconstructions from Western Tien Shan and reveals the large-scale drought signals of Western Tien Shan. The wavelet analysis indicates the existence of some decadal (60 and 11 years) and interannual (2.0–4.0 years) periodicities, which may potentially be the fingerprints of large-scale land–atmosphere–ocean circulations. This study provides the first long-term drought reconstruction and drought assessment for Almaty and will aid in future plans to address climate change of Kazakhstan.  相似文献   

7.
李珍  李相虎  张丹  蔺亚玲 《湖泊科学》2022,34(4):1319-1334
洞庭湖是长江中游重要的通江湖泊,水系格局复杂.近年来在气候变化和人类活动的双重影响下,江湖关系发生变化,湖泊水文干旱事件频发.基于洞庭湖、流域和长江干流水文站点的实测数据,通过标准化水位指数和标准化径流指数识别了水文干旱事件,并运用Copula函数分析了洞庭湖-流域-长江系统水文干旱的联合概率分布特征.结果表明:在年尺度上,1964—2016年间洞庭湖共发生了9次水文干旱事件,水文干旱的发生概率为14.01%,洞庭湖-流域系统、洞庭湖-长江系统的水文干旱联合概率分别为9.65%和8.58%,表明年尺度上流域来水对洞庭湖水文干旱的影响更大.在季节尺度上,洞庭湖-流域系统春季水文干旱联合概率最高,且两者同时发生水文干旱事件的次数最多,表明洞庭湖春季水文干旱与流域入湖补给减少有密切关系;而洞庭湖-长江系统,其秋季水文干旱联合概率最大,尤其自2003年以后更加极端和频发,这一方面受秋季降水减少和流域内人类活动的影响,另一方面三峡水库秋季蓄水使长江中下游干流水位降低,长江对湖泊顶托作用减弱也是重要原因之一.  相似文献   

8.
Severe hydrological droughts in the Amazon have generally been associated with strong El Niño events. More than 100 years of stage record at Manaus harbour confirms that minimum water levels generally coincide with intense warming in the tropical Pacific sea waters. During 2005, however, the Amazon experienced a severe drought which was not associated with an El Niño event. Unless what usually occurs during strong El Niño events, when negative rainfall anomalies usually affect central and eastern Amazon drainage basin; rainfall deficiencies in the drought of 2005 were spatially constrained to the west and southwest of the basin. In spite of this, discharge stations at the main‐stem recorded minimum water levels as low as those observed during the basin‐wide 1996–1997 El Niño‐related drought. The analysis of river discharges along the main‐stem and major tributaries during the drought of 2004–2005 revealed that the recession on major tributaries began almost simultaneously. This was not the case in the 1996–1997 drought, when above‐normal contribution of some tributaries for a short period during high water was crucial to partially counterbalance high discharge deficits of the other tributaries. Since time‐lagged contributions of major tributaries are fundamental to damp the extremes in the main‐stem, an almost coincident recession in almost all tributaries caused a rapid decrease in water discharges during the 2005 event. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Abstract

A comparison study is presented of three methods for evaluating trends in drought frequency: the standardized precipitation index (SPI), the Palmer drought severity index (PDSI), and a new method for estimation of dry spells (DS), which is based on average daily temperature and precipitation, and takes into account the length of a spell. The methods were applied to climate data from 450 stations in the Elbe River basin for the period 1951–2003, as well as data from several stations with longer observed time series. Statistical methods were used to calculate trend lines and evaluate the significance of detected trends. The dry spells estimated with the new method show significant trends in the whole lowland part of the Elbe basin during the last 53 years, and at the 10% level almost everywhere in the German part of the basin excluding mountains and the area around the river mouth. The SPI and PDSI methods also revealed significant trends, but for smaller areas in the lowland. The new DS method provides a useful supplement to other drought indices for the detection of trends in drought frequency. Furthermore, the DS method was able to detect statistically significant trends in areas where the other two methods failed to find significant trends, e.g. in the loess region in the southwest of the German part of the basin, where small insignificant changes in climate can lead to significant changes in water fluxes. This is important, because the loess region is the area within the basin having the highest crop yields. Therefore, additional research has to be done to investigate possible impacts of detected trends on water resources availability, and possible future trends in drought frequency under climate change.  相似文献   

11.
Isotope signatures in precipitation from the Global Network for Isotopes in Precipitation around the Mediterranean basin and literature data are compared with isotopic data from a large karstic aquifer in southeast Spain to explain the origin and type of the precipitation events dominating recharge. Analysis of the deuterium excess d at the scale of the Mediterranean basin and at the regional scale allows us to understand the isotopic context of the study area: Campo de Dalias and the Sierra de Gador (Almería province). The origin of precipitation can be determined from its d value. The d value changes as a function of the initial evaporation condition. It depends on the relative humidity and temperature during the evaporation producing the water vapour of the clouds. The water vapour, which dominates the study area, is generated in two areas: the Atlantic Ocean (d = 10‰) and the western Mediterranean basin (d = 15‰). With increasing precipitation volume, the western Mediterranean character dominates. These heavier storms contribute mainly to recharge, as illustrated by the d value of 13·6‰ in deep groundwater of the Campo de Dalias. Weighted d values increase with the volume of precipitation, giving a significant relationship for the southern and eastern coasts of the Iberian Peninsula. This selectivity of d to monthly precipitation was used to estimate the return period of precipitation leading to aquifer recharge at 0·9–4·9 years. Moderate rainfall, which occurs more frequently, still represents ~60–90% of the total precipitation. One of the challenges to meet ever‐growing water demands is to increase recharge from moderate events yielding intermediate quantities per event, but forming the bulk of the annual precipitation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The Tarim River Basin is a special endorheic arid drainage basin in Central Asia, characterized by limited rainfall and high evaporation as common in deserts, while water is supplied mainly by glacier and snow melt from the surrounding mountains. The existing drought indices can hardly capture the drought features in this region as droughts are caused by two dominant factors (meteorological and hydrological conditions). To overcome the problem, a new hybrid drought index (HDI), integrating the meteorological and hydrological drought regimes, was developed and tested in the basin in the work. The index succeeded in revealing the drought characteristics and the ensemble influence better than the single standardized precipitation index or the hydrological index. The Artificial Neural Network approach based on temperature and precipitation observations was set up to simulate the HDI change. The method enabled constructing scenarios of future droughts in the region using climate simulation of the GCMs under four RCP scenarios from the latest CMIP5 project. The simulations in the study have shown that the water budget patterns in the Tarim River Basin are more sensitive to temperature than to precipitation. Dominated by temperature rise causing an accelerating snow/glacier melt, the frequency of drought months is projected to decrease by about 14% in the next decades (until 2035). The drought duration is expected to be shortened to 3 months on average, with the severity alleviated. However, the region would still suffer more severe droughts with a high intensity in some years. The general decrease in drought frequency and intensity over the region in the future would be beneficial for water resources management and agriculture development in the oases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
ABSTRACT

Droughts can have serious negative impacts on the water quality needed for irrigated agriculture. The Metropolitan region of Chile is a relevant producer of high-value crops and is prone to droughts. Standardized Drought Indices were used to characterize meteorological and hydrological droughts for the period from 1985 to 2015. To understand the relationship between droughts and water quality, we evaluated the correlations between daily discharge and surface water quality observations. The threshold level method was used to compare physicochemical parameters during hydrological drought periods with the Chilean water quality thresholds for agricultural uses. A significant (p < 0.05) negative relationship between discharge and electrical conductivity and major ions was found in most of the basin. Hydrological stations located in irrigation districts exceeded the official thresholds for these parameters during hydrological drought periods seriously threatening irrigated agriculture of the region.  相似文献   

14.
Abstract

The combined analysis of precipitation and water scarcity was done with the use of the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI), developed as a monthly, two-variable SPI-SRI indicator to identify different classes of hydrometeorological conditions. Stochastic analysis of a long-term time series (1966–2005) of monthly SPI-SRI indicator values was performed using a first-order Markov chain model. This provided characteristics of regional features of drought formation, evolution and persistence, as well as tools for statistical long-term drought hazard prediction. The study was carried out on two subbasins of the Odra River (Poland) of different orography and land use: the mountainous Nysa K?odzka basin and the lowland, agricultural Prosna basin. Classification obtained with the SPI-SRI indicator was compared with the output from the NIZOWKA model that provided identification of hydrological drought events including drought duration and deficit volume. Severe and long-duration droughts corresponded to SPI-SRI Class 3 (dry meteorological and dry hydrological), while severe but short-term droughts (lasting less than 30 days) corresponded to SPI-SRI Class 4 (wet meteorological and dry hydrological). The results confirm that, in Poland, meteorologically dry conditions often shift to hydrologically dry conditions within the same month, droughts rarely last longer than 2 months and two separate drought events can be observed within the same year.  相似文献   

15.
Water resources and soil erosion are the most important environmental concerns in the Yangtze River basin, where soil erosion and sediment yield are closely related to rainfall erosivity. The present study explores the spatial and temporal changing patterns of the rainfall erosivity in the Yangtze River basin of China during 1960–2005 at annual, seasonal and monthly scales. The Mann–Kendall test is employed to detect the trends during 1960–2005, and the T test is applied to investigate possible changes between 1991–2005 and 1960–1990. Meanwhile the Rescaled Range Analysis is used for exploring future trend of rainfall erosivity. Moreover the continuous wavelet transform technique is using studying the periodicity of the rainfall erosivity. The results show that: (1) The Yangtze River basin is an area characterized by uneven spatial distribution of rainfall erosivity in China, with the annual average rainfall erosivity range from 131.21 to 16842 MJ mm ha?1 h?1. (2) Although the directions of trends in annual rainfall erosivity at most stations are upward, only 22 stations have significant trends at the 90 % confidence level, and these stations are mainly located in the Jinshajiang River basin and Boyang Lake basin. Winter and summer are the seasons showing strong upward trends. For the monthly series, significant increasing trends are mainly found during January, June and July. (3) Generally speaking, the results detected by the T test are quite consistent with those detected by the Mann–Kendall test. (4) The rainfall erosivity of Yangtze River basin during winter and summer will maintain a detected significant increasing trend in the near future, which may bring greater risks to soil erosion. (5) The annual and seasonal erosivity of Yangtze River basin all have one significant periodicity of 2–4 years.  相似文献   

16.
ABSTRACT

Ten notable meteorological drought indices were compared on tracking the effect of drought on streamflow. A 730-month dataset of precipitation, temperature and evapotranspiration for 88 catchments in Oregon, USA, representing pristine conditions, was used to compute the drought indices. These indices were correlated with the monthly streamflow datasets of the minimum, maximum and mean discharge, and the discharge monthly fluctuation; it was revealed that the 3-month Z-score drought index (Z3) has the best association with the four streamflow variables. The Mann-Kendall trend detection test applied to the latter index time series mainly highlighted a downward trend in the autumn and winter drought magnitude (DM) and an upward trend in the spring and summer DM (p = 0.05). Finally, the Pettitt test indicated an abrupt decline in the annual and autumn DM, which began in 1984 and 1986, respectively.  相似文献   

17.
Drought is a temporary, random and regional climatic phenomenon, originating due to lack of precipitation leading to water deficit and causing economic loss. Success in drought alleviation depends on how well droughts are defined and their severity quantified. A quantitative definition identifies the beginning, end, spatial extent and the severity of drought. Among the available indices, no single index is capable of fully describing all the physical characteristics of drought. Therefore, in most cases it is useful and necessary to consider several indices, examine their sensitivity and accuracy, and investigate for correlation among them. In this study, the geographical information system‐based Spatial and Time Series Information Modeling (SPATSIM) and Daily Water Resources Assessment Modeling (DWRAM) software were used for drought analysis on monthly and daily bases respectively and its spatial distribution in both dry and wet years. SPATSIM utilizes standardized precipitation index (SPI), effective drought index (EDI), deciles index and departure from long‐term mean and median; and DWRAM employs only EDI. The analysis of data from the Kalahandi and Nuapada districts of Orissa (India) revealed that (a) droughts in this region occurred with a frequency of once in every 3 to 4 years, (b) droughts occurred in the year when the ratio of annual rainfall to potential evapotranspiration (Pae/PET) was less than 0·6, (c) EDI better represented the droughts in the area than any other index; (d) all SPI, EDI and annual deviation from the mean showed a similar trend of drought severity. The comparison of all indices and results of analysis led to several useful and pragmatic inferences in understanding the drought attributes of the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

The standardized series of monthly and weekly flow sequences, referred to as standardized hydrological index (SHI) series, from five rivers in the Canadian prairies were subjected to return period (Tr) analysis of drought length (L). The SHI series were truncated at drought probability levels q ranging from 0.5 to 0.05 with the intention of deducing drought events and corresponding drought lengths. The values of L were fitted to the Pearson 3, the gamma (2-parameter), the exponential (1-parameter), the Weibull 3 and the Weibull (2-parameter) probability density functions (pdfs). A priori assignment of one week or one month for the location parameter in the Pearson 3 pdf proved logical and also facilitated the rapid estimation of other parameters using either the method of moments or the method of maximum likelihood. The Pearson 3 turns out to be the most suitable pdf to describe and to estimate return periods of drought lengths. At the monthly and weekly time scales, it was inferred that the sample size (T, months or weeks) of SHI series could be treated equivalent to the return period of the largest recorded drought length. At the annual time scale, however, the sample size (T, years) should be modified using either the Hazen or the Gringorten plotting position formula to reflect the actual return period of the largest recorded drought length in years.
Editor D. Koutsoyiannis; Associate editor E. Gargouri  相似文献   

19.
S. Mohan  P. K. Sahoo 《水文研究》2008,22(6):863-872
In Part 1 we demonstrated the applicability of stochastic models to predicting the characteristics of point drought events within any planning period by means of a case study (Mohan S, Sahoo PK (2007) Hydrological Processes 21 : this issue). In addition, studies on regional droughts are important in the context of regional level planning and evolving management strategies. The small number of drought events from a particular streamflow or rainfall series, when subjected to statistical analysis in order to predict future occurrences, produces results that are not very reliable. To overcome this difficulty, we propose using a long sequence of synthetically generated annual rainfall series at various rain‐gauge stations of a region, and multiyear regional droughts were derived from both historic and generated series. The key parameters for a successful regional multiyear drought study are the critical area ratio and the critical level, and the area affected by the drought can be ascertained using these parameters. The important regional drought parameters were determined and their suitable probability distributions were arrived at by studying a total of nine possible probability models; these models can be used in predicting the longest regional drought duration and the greatest regional drought severity with a given return period. The effect of change of critical parameters on the regional drought parameters is also studied and reported. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Drought, a normal recurrent event in arid and semiarid lands such as Iran, is typically of a temporary nature usually leaving little permanent aftermath. In the current study, the rainfall and drought severity time series were analyzed at 10 stations in the eastern half of Iran for the period 1966–2005. The drought severity was computed using the Standardized Precipitation Index (SPI) for a 12‐month timescale. The trend analyses of the data were also performed using the Kendall and Spearman tests. The results of this study showed that the rainfall and drought severity data had high variations to average values in the study period, and these variations increased with increasing aridity towards the south of the study area. The negative serial correlations found in the seasonal and annual rainfall time series were mostly insignificant. The trend tests detected a significant decreasing trend in the spring rainfall series of Birjand station at the rate of 8.56 mm per season per decade and a significant increasing trend in the summer rainfall series of Torbateheydarieh station at the rate of 0.14 mm per season per decade, whereas the rest of the trends were insignificant. Furthermore, the 12‐month values of the standardized precipitation index decreased at all the stations except Zabol during the past four decades. During the study period, all of the stations experienced at least one extreme drought which mainly occurred in the winter season. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号