共查询到20条相似文献,搜索用时 15 毫秒
1.
Pascal Podwojewski Jean Louis Janeau Séraphine Grellier Christian Valentin Simon Lorentz Vincent Chaplot 《地球表面变化过程与地形》2011,36(7):911-922
In most regions of the world overgrazing plays a major role in land degradation and thus creates a major threat to natural ecosystems. Several feedbacks exist between overgrazing, vegetation, soil infiltration by water and soil erosion that need to be better understood. In this study of a sub‐humid overgrazed rangeland in South Africa, the main objective was to evaluate the impact of grass cover on soil infiltration by water and soil detachment. Artificial rains of 30 and 60 mm h?1 were applied for 30 min on 1 m2 micro‐plots showing similar sandy‐loam Acrisols with different proportions of soil surface coverage by grass (Class A: 75–100%; B: 75–50%; C: 50–25%; D: 25–5%; E: 5–0% with an outcropping A horizon; F: 0% with an outcropping B horizon) to evaluate pre‐runoff rainfall (Pr), steady state water infiltration (I), sediment concentration (SC) and soil losses (SL). Whatever the class of vegetal cover and the rainfall intensity, with the exception of two plots probably affected by biological activity, I decreased regularly to a steady rate <2 mm h?1 after 15 min rain. There was no significant correlation between I and Pr with vegetal cover. The average SC computed from the two rains increased from 0·16 g L?1 (class A) to 48·5 g L?1 (class F) while SL was varied between 4 g m?2 h?1 for A and 1883 g m?2 h?1 for F. SL increased significantly with decreasing vegetal cover with an exponential increase while the removal of the A horizon increased SC and SL by a factor of 4. The results support the belief that soil vegetation cover and overgrazing plays a major role in soil infiltration by water but also suggest that the interrill erosion process is self‐increasing. Abandoned cultivated lands and animal preferred pathways are more vulnerable to erosive processes than simply overgrazed rangelands. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
Seasonal variation of soil respiration under different land use/land cover in arid region 总被引:3,自引:0,他引:3
Through combining the soil respiration with the main environmental factors under the planting shelterbelt (Populus woodland) and the natural desert vegetation (Tamarix ramosissima Phragmites communis community and Haloxylon ammodendron community) in the western Junngar Basin, the difference in soil respiration under different land use/land cover types and the responses of soil respiration to temperature and soil moisture were analyzed. Results showed that the rate of soil respiration increased with temperature. During the daytime, the maximum soil respiration rate occurred at 18:00 for the Populus woodland, 12:00 for T. ramosissima Ph. communis community, and 14:00 for H. ammodendron community, while the minimum rate all occurred at 8:00. The soil respiration, with the maximum rate in June and July and then declining from August, exhibited a similar trend to the near-surface temperature from May to October. During the growing season, the mean soil respiration rates and seasonal variation differed among the land use/land cover types, and followed the order of Populus woodland >T. ramosissima Ph. communis community > H. ammodendron community. The difference in the soil respiration rate among different land use/land cover types was significant. The soil respiration of Pouplus woodland was significantly correlated with the near-surface temperature and soil temperature at 10 cm depth (P < 0.01) in an exponential manner. The soil respiration of T. ramosissima Ph. communis and H. ammodendron communities were all linearly correlated with the near-surface temperature and soil surface temperature (P < 0.01). Based on the near-surface tempera-ture, the calculated Q10 of Populus woodland, T. ramosissima Ph. communis community and H. ammodendron community were 1.48, 1.59 and 1.63, respectively. The integrated soil respiration of the three land use/land cover types showed a significant correlation with the soil moisture at 0―5 cm, 5― 15 cm and 0―15 cm depths (P < 0.01). The quadratic model could best describe the relationship between soil respiration and soil moisture at 0―5 cm depth (P < 0.01). 相似文献
3.
Methods for predicting unit plot soil loss for the ‘Sparacia’ Sicilian (Southern Italy) site were developed using 316 simultaneous measurements of runoff and soil loss from individual bare plots varying in length from 11 to 44 m. The event unit plot soil loss was directly proportional to an erosivity index equal to (QREI30)1·47, being QREI30 the runoff ratio (QR) times the single storm erosion index (EI30). The developed relationship represents a modified version of the USLE‐M, and therefore it was named USLE‐MM. By the USLE‐MM, a constant erodibility coefficient was deduced for plots of different lengths, suggesting that in this case the calculated erodibility factor is representative of an intrinsic soil property. Testing the USLE‐M and USLE‐MM schemes for other soils and developing simple procedures for estimating the plot runoff ratio has practical importance to develop a simple method to predict soil loss from bare plots at the erosive event temporal scale. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
4.
Ryan F. Connon Laura Chasmer Emily Haughton Manuel Helbig Chris Hopkinson Oliver Sonnentag William L. Quinton 《水文研究》2021,35(9):e14363
In the discontinuous permafrost zone of the Northwest Territories (NWT), Canada, snow covers the ground surface for half the year. Snowmelt constitutes a primary source of moisture supply for the short growing season and strongly influences stream hydrographs. Permafrost thaw has changed the landscape by increasing the proportional coverage of permafrost-free wetlands at the expense of permafrost-cored peat plateau forests. The biophysical characteristics of each feature affect snow water equivalent (SWE) accumulation and melt rates. In headwater streams in the southern Dehcho region of the NWT, snowmelt runoff has significantly increased over the past 50 years, despite no significant change in annual SWE. At the Fort Simpson A climate station, we found that SWE measurements made by Environment and Climate Change Canada using a Nipher precipitation gauge were more accurate than the Adjusted and Homogenized Canadian Climate Dataset which was derived from snow depth measurements. Here, we: (a) provide 13 years of snow survey data to demonstrate differences in end-of-season SWE between wetlands and plateau forests; (b) provide ablation stake and radiation measurements to document differences in snow melt patterns among wetlands, plateau forests, and upland forests; and (c) evaluate the potential impact of permafrost-thaw induced wetland expansion on SWE accumulation, melt, and runoff. We found that plateaus retain significantly (p < 0.01) more SWE than wetlands. However, the differences are too small (123 mm and 111 mm, respectively) to cause any substantial change in basin SWE. During the snowmelt period in 2015, wetlands were the first feature to become snow-free in mid-April, followed by plateau forests (7 days after wetlands) and upland forests (18 days after wetlands). A transition to a higher percentage cover of wetlands may lead to more rapid snowmelt and provide a more hydrologically-connected landscape, a plausible mechanism driving the observed increase in spring freshet runoff. 相似文献
5.
Testing assumptions and procedures to empirically predict bare plot soil loss in a Mediterranean environment 下载免费PDF全文
Empirical prediction of soil erosion has both scientific and practical importance. This investigation tested USLE and USLE‐based procedures to predict bare plot soil loss at the Sparacia area, in Sicily. Event soil loss per unit area, Ae, did not vary appreciably with plot length, λ, because the decrease in runoff with λ was offset by an increase in sediment concentration. Slope steepness, s, had a positive effective on Ae, and this result was associated with a runoff coefficient that did not vary appreciably with s and a sediment concentration generally increasing with s. Plot steepness did not have a statistically detectable effect on the calculations of the soil erodibility factor of both the USLE, K, and the USLE‐M, KUM, models, but a soil‐independent relationship between KUM and K was not found. The erosivity index of the USLE‐MM model performed better than the erosivity index of the Central and Southern Italy model. In conclusion, the importance of an approach allowing soil loss predictions that do not necessarily increase with λ was confirmed together with the usability of already established and largely applied relationships to predict steepness effects. Soil erodibility has to be determined with reference to the specific mathematical scheme and conversion between different schemes seems to need taking into account the soil characteristics. The USLE‐MM shows promise for further developments. The evolutionary concept applied in the development of the USLE should probably be rediscovered to improve development of soil erosion prediction tools. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
Analysis of surface roughness in relation to soil loss and runoff at high rainfall intensities 总被引:1,自引:0,他引:1
The decay of roughness is an important factor governing surface processes such as infiltration and soil erosion. Thus the decay of surface roughness under different surface conditions was investigated and related to quantitative amounts of soil loss, runoff and sediment concentration in a laboratory experiment. Rainfall with an intensity of 128 mm/h was applied to a bare or mulched surfaces of a sandy loam soil with known surface roughness at specified time intervals. The decay of roughness as expressed by roughness ratio, in this experiment, was better predicted when related to an exponential function of the square root of cumulative kinetic energy of rainfall rather than with the cumulative rainfall. The roughness decay equations in literature did not predict breakdown under mulched surfaces accurately. Thus the exponent parameters of the roughness decay equations were adjusted to reflect the reduced decay occurring under mulched surfaces. In a bare soil, regression equations expressing the dependent variables as a function of initial roughness index were significant, but with low coefficients of determination, being 0·39 for soil loss, 0·12 for runoff and 0·36 for sediment concentration. In addition to initial roughness index, cumulative kinetic energy of rainfall was further included in the regressions. This led to an increase in coefficients of determination, which was 0·81 for soil loss, 0·74 for runoff and 0·49 for sediment concentration. The coefficients of determination (0·87 for soil loss, 0·85 for runoff and 0·51 for sediment concentration) were further increased when the final roughness index was included in addition to initial roughness index and cumulative kinetic energy in the regressions. This work shows that soil loss and runoff could be predicted from bare soil surface provided the initial roughness and the energy of rainfall is known. However, field verifications of these relationships are needed under different tillage tools and under natural rainfall. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
7.
The hydrology and contrasting erosional responses of two snowmelt events on arable farmland in Fife, Scotland, are compared. Snowmelt-generated runoff in January 1993 caused widespread soil erosion across eastern Scotland. Gullying was exemplified by three sites in Fife, where thaw of a drifted snowpack was augmented by rainfall to produce a larger erosive response than meteorological data alone would have predicted. Up to 127 m3 of soil was lost from individual gullies in fields sown to winter cereals. In February 1996 snowfall of comparable depth again covered the field area, but a more uniform snowpack, slower thaw, greater crop cover and lower rainfall during the thaw phase combined to lessen the impact of erosion. These case studies demonstrate the complexity of the erosion/runoff relationship for rain on snow events, in which erosional severity depends not just on snow depth but on snow distribution, thaw rate and the amount and timing of rainfall during the thaw phase. © 1998 John Wiley & Sons, Ltd. 相似文献
8.
ABSTRACT This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff. 相似文献
9.
Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River Basin,Kenya 总被引:2,自引:0,他引:2
The impacts of historical land cover changes witnessed between 1973 and 2000 on the hydrologic response of the Nyando River Basin were investigated. The land cover changes were obtained through consistent classifications of selected Landsat satellite images. Their effects on runoff peak discharges and volumes were subsequently assessed using selected hydrologic models for runoff generation and routing available within the HEC‐HMS. Physically based parameters of the models were estimated from the land cover change maps together with a digital elevation model and soil datasets of the basin. Observed storm events for the simulation were selected and their interpolated spatial distributions obtained using the univariate ordinary Kriging procedure. The simulated flows from the 14 sub‐catchments were routed downstream afterwards to obtain the accrued effects in the entire river basin. Model results obtained generally revealed significant and varying increases in the runoff peak discharges and volumes within the basin. In the upstream sub‐catchments with higher rates of deforestation, increases between 30 and 47% were observed in the peak discharge. In the entire basin, however, the flood peak discharges and volumes increased by at least 16 and 10% respectively during the entire study period. The study successfully outlined the hydrological consequences of the eminent land cover changes and hence the need for sustainable land use and catchment management strategies. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
Jiayi Huo Changjun Liu Xinxiao Yu Lihua Chen Wenge Zheng Yuanhui Yang Changwen Yin 《水文研究》2021,35(1):e13985
Soil and nutrient loss play a vital role in eutrophication of water bodies. Several simulated rainfall experiments have been conducted to investigate the effects of a single controlling factor on soil and nutrient loss. However, the role of precipitation and vegetation coverage in quantifying soil and nutrient loss is still unclear. We monitored runoff, soil loss, and soil nutrient loss under natural rainfall conditions from 2004 to 2015 for 50–100 m2 runoff plots around Beijing. Results showed that soil erosion was significantly reduced when vegetation coverage reached 20% and 60%. At levels below 30%, nutrient loss did not differ among different vegetation cover levels. Minimum soil N and P losses were observed at cover levels above 60%. Irrespective of the management measure, soil nutrient losses were higher at high-intensity rainfall (Imax30>15 mm/h) events compared to low-intensity events (p < 0.05). We applied structural equation modelling (SEM) to systematically analyze the relative effects of rainfall characteristics and environmental factors on runoff, soil loss, and soil nutrient loss. At high-intensity rainfall events, neither vegetation cover nor antecedent soil moisture content (ASMC) affected runoff and soil loss. After log-transformation, soil nutrient loss was significantly linearly correlated with runoff and soil loss (p < 0.01). In addition, we identified the direct and indirect relationships among the influencing factors of soil nutrient loss on runoff plots and constructed a structural diagram of these relationships. The factors positively impacting soil nutrient loss were runoff (44%–48%), maximum rainfall intensity over a 30-min period (18%–29%), rainfall depth (20%–27%), and soil loss (10%–14%). Studying the effects of rainfall and vegetation coverage factors on runoff, soil loss, and nutrient loss can improve our understanding of the underlying mechanism of slope non-point source pollution. 相似文献
11.
Factors controlling soil erosion and runoff and their impacts in the upper Wissey catchment,Norfolk, England: A ten year monitoring programme 下载免费PDF全文
Robert Evans 《地球表面变化过程与地形》2017,42(14):2266-2279
Monitoring of runoff and erosion in farmers' fields and their impacts gives a better understanding of erosion. However, it is rare that monitoring at frequent intervals is done over a prolonged period. A part of the upper Wissey catchment in central Norfolk, eastern England was monitored for 10 years to assess the extent and frequency of erosion and runoff, their causes and impacts. Surface wash occurred more widely and more frequently than expected. Runoff and erosion took place a number of times in a year in a range of autumn‐ and spring‐sown crops, and occurred dominantly down tractor wheelings or ruts left after harvesting potatoes or sugar beet under wet conditions. Over 10 years erosion affected about half the 105 fields monitored, often more than once. Erosion was more extensive in autumn‐sown cereal fields, but often more severe and with greater off‐field effects, for example muddy flooding of roads from spring‐sown late harvested crops such as potatoes and sugar beet. Runoff from outdoor pig fields also flooded roads and houses. This study confirms other studies of the extent, frequency and severity of erosion in Britain, that rill erosion does not occur in every field in the landscape, that in the main, fields do not erode frequently and rates of erosion are generally small. Runoff and erosion within a field took place more frequently than had been suspected. Compaction and destruction of topsoil structure by machinery especially at harvest, or by outdoor pigs, is important in initiating runoff. Rates of erosion were generally very low and will not affect soil productivity adversely over the short‐term. However, flooding of roads and property, and especially pollution of water courses by sediment, nutrients and pesticides are important off‐field impacts and are the primary reason, over the short‐term, for mitigating runoff and erosion. Monitoring such as this sheds light on the problems of modelling to predict risk of erosion based on erosion rates. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
12.
Ataollah Kavian Aazam Alipour Karim Soleimani Leila Gholami Pete Smith Jesús Rodrigo‐Comino 《水文研究》2019,33(2):261-270
The drastic growth of population in highly industrialized urban areas, as well as fossil fuel use, is increasing levels of airborne pollutants and enhancing acid rain. In rapidly developing countries such as Iran, the occurrence of acid rain has also increased. Acid rain is a driving factor of erosion due to the destructive effects on biota and aggregate stability; however, little is known about its impact on specific rates of erosion at the pedon scale. Thus, the present study aimed to investigate the effect of acid rain at pH levels of 5.25, 4.25, and 3.75 for rainfall intensities of 40, 60, and 80 mm h?1 on initial soil erosion processes under dry and saturated soil conditions using rainfall simulations. The results were compared using a two‐way ANOVA and Duncan tests and showed that initial soil erosion rates with acidic rain and non‐acidic rain under dry soil conditions were significantly different. The highest levels of soil particle loss due to splash effects in all rainfall intensities were observed with the most acidic rain (pH = 3.75), reaching maximum values of 16 g m?2 min?1. The lowest levels of particle losses were observed in the control plot where non‐acidic rain was used, with values ranging from 3.8 to 8.1 g m?2 min?1. Similarly, under saturated soil conditions, the lowest level of soil particle loss was observed in the control plot, and the highest peaks of soil loss were observed for the most acidic rains (pH = 3.75 and pH = 4.25), reaching maximum average values of 40 g m?2 min?1. However, for saturated soils with acidic water but with non‐acidic rain, the highest soil particle loss was observed for the control plot for all the rainfall intensities. In conclusion, acidic rain has a negative impact on soils, which can be more intense with a concomitant increase in rainfall intensity. Rapid solutions, therefore, need to be found to reduce the emission of pollutants into the air, otherwise, rainfall erosivity may drastically increase. 相似文献
13.
Sampling the collected suspension in a storage tank is a common procedure to obtain soil loss data. A calibration curve of the tank has to be used to obtain actual concentration values from those measured by sampling. However, literature suggests that using a tank calibration curve was not a common procedure in the past. For the clay soil of the Sparacia (Italy) experimental station, this investigation aimed to establish a link between the relative performances of the USLE‐M and USLE‐MM models, usable to predict plot soil loss at the event temporal scale, and soil loss measurement errors. Using all available soil loss data, lower soil loss prediction errors were obtained with the USLE‐MM (exponent of the erosivity term, b1 > 1) than the USLE‐M (b1 = 1). A systematic error of the soil loss data is unexpected for the Sparacia soil because the calibration curve does not depend on the water level in the tank. In any case, this type of error does not have any effect on the b1 exponent. Instead, this exponent decreases as the level of underestimation increases for increasing soil loss values. This type of error can occur at Sparacia if it is assumed that a soil loss measurement can be obtained by a bottle sampler dipped close to the bottom of the tank after mixing the suspension and assuming that the measured concentration coincides with the actual one. In this case, the risk is to obtain a lower b1 value than the actual one. In conclusion, additional investigations on the factors determining errors in soil loss data collected by a sampling procedure are advisable because these errors can have a noticeable effect on the calibrated empirical models for soil loss prediction. 相似文献
14.
Problems related to scale continue to be at the forefront of research in hydrology. Past research into issues of scale has focused mainly on digital elevation model grid size, the appropriate number and size of sub‐areas for subdividing a watershed, parameter transferability between watersheds and appropriate scales for linking hydrological and general circulation models. Much less attention has been given to the effects of scale on the representation of land cover and hydrological model response. Recent studies with respect to changes in land cover and hydrologic response have tended to focus on the issue of land cover maturity and the conversion of land through agricultural and forestry practices. The focus of this study is to examine the impact of the level of detail at which land cover is represented in modelling the hydrological response of Wolf Creek Basin in northwest Canada. A grid‐based land cover map with a spatial resolution of 30 m is coarsened or smoothed using several common grid‐based methods of aggregating categorical data, including: pixel thinning, modal smoothing and modal aggregation. A majority rule method based on polygons is also applied to the 30 m base cover. The SLURP hydrologic model is calibrated for the base cover and used as a reference for comparing simulations for the coarsened or ‘generalized’ land cover maps. Results of the simulations are compared to examine the sensitivity of hydrologic response to generalized land cover information. Comparisons of the SLURP model runs for Wolf Creek suggest that reducing the level of detail of land cover information generally has a limited effect on hydrologic response at the outlet. However, results for averages of water balance components across the basin suggest that the local variability of hydrologic response is affected in general. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
15.
A new version of the USLE‐MM for predicting bare plot soil loss at the Sparacia (South Italy) experimental site 下载免费PDF全文
Improving empirical prediction of plot soil erosion at the event temporal scale has both scientific and practical importance. In this investigation, 492 runoff and soil loss data from plots of different lengths, λ (11 ≤ λ ≤ 44 m), and steepness, s (14.9 ≤ s ≤ 26.0%), established at the Sparacia experimental station, in Sicily, South Italy, were used to derive a new version of Universal Soil Loss Equation (USLE)‐MM model, by only assuming a value of one for the topographic length, L, and steepness, S, factors for λ = 22 m and s = 9%, respectively. An erosivity index equal to (QREI30)b1, QR and EI30 being the runoff coefficient and the event rainfall erosivity index, respectively, with b1 > 1 was found to be an appropriate choice for the Sparacia area. The specifically developed functions for L and S did not differ appreciably from other, more widely accepted relationships (maximum differences by a factor of 1.22 for L and 1.09 for S). The new version of the USLE‐MM performed particularly well for highly erosive events, because predicted soil loss differed by not more than a factor of 1.19 from the measured soil loss for measured values of more than 100 Mg ha?1. The choice of the relationships to predict topographic effects on plot soil loss should not represent a point of particular concern in the application of the USLE‐MM in other environments. However, tests of the empirical approach should be carried out in other experimental areas in an attempt to develop analytical tools, usable at the event temporal scale, reasonably simple and of wide validity. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Francesco G. Carollo Costanza Di Stefano Vito Ferro Vincenzo Pampalone Francesco Sanzone 《地球表面变化过程与地形》2016,41(7):867-874
In order to measure soil loss in equipped plots the estimate of the weight of solid material intercepted at their lower end is required. At the experimental area of Sparacia, Sicily, the runoff produced by an erosive event is collected within storage tanks with a capacity of about 1 m3. In this paper, the use of a new sampler is proposed to measure easily the weight of solid material eroded from an experimental plot and collected into a storage tank. The sampler is a cylinder having a closing valve at the bottom. Two different series of runs were carried out both to test the reliability of the sampler and to establish a sampling procedure, respectively. An analysis of various sampling configurations usable in the field differentiated by the number and location of sampling verticals in the tank cross‐section was finally carried out. The results of the present investigation are that the concentration measurement by the sampler was more accurate than that obtained by other methods involving a collection tank, agitation and sampling of the suspension. This sampler is cheap and usable in combination with a quick field sampling procedure which is particularly advisable when the number of plots equipped at an experimental area is large. The sampler was tested using a clay soil contained within cylinders and a cubic tank, but it appeared also to be usable with coarser sediment than clay and in combination with tanks having a different shape. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
18.
In this paper sediment yield data, measured from 1978 to 1994 in two small Calabrian basins (W2 and W3) reafforested with eucalyptus trees (Eucalyptus occidentalis Engl.), and the Modified Universal Soil Loss Equation (MUSLE) applied in a distributed form are used to evaluate the anti-erosive effects of eucalyptus cover. At first step the sediment yield measurements observed in W2 basin are used to estimate a single cover management factor representative of the eucalyptus coppice and equal to the median value (0·164) of the cover management factor values calculated for each runoff event. Then, the reliability of the selected representative cover management factor is verified on W3 by comparing the cumulative distribution function (CDF) of the measured sediment yield with the CDF of the calculated one. Finally, the temporal analysis of the crop and management factor is developed searching, at monthly and annual scale, the correlation between crop anti-erosive effectiveness and rainfall erosivity index. © 1998 John Wiley & Sons, Ltd. 相似文献
19.
20.
Chang Ao Wenzhi Zeng Peiling Yang Weimin Xing Guoqing Lei Jingwei Wu Jiesheng Huang 《水文研究》2021,35(4):e14130
Natural hillslopes are mostly composed of complex slope shapes, which significantly affect soil erosion. However, existing studies have mainly focused on uniform slopes to simplify complex hillslopes, and the mechanisms responsible for the influence of slope shape on soil and nutrient losses are still not well understood, especially in the application of soil improvers to reduce soil loss. To investigate the effects of slope shape and polyacrylamide (PAM) application on runoff, soil erosion and nutrient loss, this study conducted artificial field rainfall experiments involving two PAM application rates and nine slope shapes. The results indicate that the average amount of soil loss from convex slopes was 1.5 and 1.3 times greater than that from concave and uniform slopes, respectively, and the average amount of ammonia nitrogen loss and phosphate loss increased by 24.0%–58.6%. Soil and nutrient losses increased as the convexity of the convex slopes increased. For runoff, there was little difference between concave and convex slopes, but the runoff amount for both slopes was greater than that for uniform slopes. After PAM application, the soil loss decreased by more than 90%, and the nutrient loss decreased by 28.2%–68.1%. The application of PAM was most effective in reducing soil erosion and nutrient loss from convex slopes, and it is recommended to appropriately increase the PAM application rate for convex slopes. A strong linear relationship between ammonia nitrogen and phosphate concentrations and sediment concentrations was found in the runoff on slopes with no PAM application. However, this linear relationship weakened for slopes with PAM application. The findings of this study may be valuable for optimizing nonpoint source pollution management in basins. 相似文献