首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The acid mine drainage (AMD) discharged from the Hejiacun uranium mine in central Hunan (China) was sampled and analyzed using ICP-MS techniques. The analyzing results show that the AMD is characterized by the major ions FeTotal, Mn, Al and Si, and is concentrated with heavy metals and metalloids including Cd, Co, Ni, Zn, U, Cu, Pb, Tl, V, Cr, Se, As and Sb. During the AMD flowing downstream, the dissolved heavy metals were removed from the AMD waters through adsorption onto and co-precipitation with metal-oxhydroxides coated on the streambed. Among these metals, Cd, Co, Ni, Zn, U, Cu, Pb and Tl are negatively correlated to pH values, and positively correlated to major ions Fe, Al, Si, Mn, Mg, Ca and K. The metals/metalloids V, Cr, Se, As and Sb are conservative in the AMD solution, and negatively-correlated to major ions Na, Ca and Mg. Due to the above different behaviors of these chemical elements, the pH-negatively related metals (PM) and the conservative metals (CM) are identified; the PM metals include Cd, Co, Ni, Zn, U, Cu, Pb and Tl, and the CM metals V, Cr, Se, As and Sb. Based on understanding the geochemistry of PM and CM metals in the AMD waters, a new equation: EXT = (Acidity + PM)/pH + CM × pH, is proposed to estimate and evaluate extent of heavy-metal pollution (EXT) of AMD. The evaluation results show that the AMD and surface waters of the mine area have high EXT values, and they could be the potential source of heavy-metal contamination of the surrounding environment. Therefore, it is suggested that both the AMD and surface waters should be treated before they are drained out of the mine district, for which the traditional dilution and neutralization methods can be applied to remove the PM metals from the AMD waters, and new techniques through reducing the pH value of the downstream AMD waters should be developed for removal of the CM metals.  相似文献   

2.
Both sulfate and conductivity are useful indicators of acid mine drainage (AMD) contamination. Unlike pH, they are both extremely sensitive to AMD even where large dilutions have occurred. The advantage of using sulfate to trace AMD is that unlike other ions it is not removed to any great extent by sorption or precipitation processes, being unaffected by fluctuations in pH. These two parameters are also closely associated as would be expected, as conductivity is especially sensitive to sulfate ions. Therefore, as sulfate analysis is difficult in the field, conductivity can be used to predict sulfate concentration in both AMD and contaminated surface waters using regression analysis. Most accurate predictions are achieved by using equations given for specific conductivity ranges or AMD sources. There is also potential to use conductivity to predict approximate concentrations of key metals when the pH of the water is within their respective solubility ranges.  相似文献   

3.
The present work describes the process of acid water discharge into the Andévalo Dam (Iberian Pyrite Belt, Huelva-Spain) starting from the interpretation of rainfall data and chemical analyses regarding pH, conductivity, metal and sulphate content in water, from a time series corresponding to the sampling of two confluent channels that discharge water into the referred dam. Statistical data treatment allows us to conclude the existence of acid mine drainage processes in the Chorrito Stream, which are translated into very low pH values and high sulphate and metal concentrations in the water coming from Herrerías Mine. On the other hand, the Higuereta Stream shows, for the same parameters, much lower values that can be interpreted as the channel response to acid rock drainage processes in its drainage basin induced by the rocky outcrops of the Iberian Pyrite Belt.  相似文献   

4.
This study was conducted to determine the effects of the waste-rock dump (WRD) of the underground polymetallic Balya Mine on the Kocacay River and eventually on Lake Manyas in Turkey. Data presented in this paper include geochemical characteristics of various kinds of water (mine, surface and groundwater) and of suspended-particle samples in the vicinity of Balya. The more polluted mine waters have low pH and high conductivity, while high concentrations of Zn, Cd, Mn tend to be found in the dry and wet seasons. High concentrations of Pb, As, Cr, Cu and S appear only in the wet season. The sources of the heavy metal concentration within the Kocacay River are leached waste, surface run off, and overflow from the spillway of the WRD. To minimize the formation of acids and dissolved metal, and for the remediation of the harmful effects of extreme contamination conditions, it is recommended that lime or alkali materials and organic carbon be added to simulate the action of sulfate-reducing bacteria.  相似文献   

5.
This study investigates the geochemical characteristics of the acid mine drainage discharged from the abandoned mine adits and tailing piles in the vicinity of the Lousal mine and evaluates the extent of pollution on water and on the stream sediments of the Corona stream. Atmospheric precipitation interacting with sulphide minerals in exposed tailings produces runoff water with pH values as low as 1.9–2.9 and high concentrations of (9,249–20,700 mg l−1), Fe (959–4,830 mg l−1) and Al (136–624 mg l−1). The acidic effluents and mixed stream water carry elevated Cu, Pb, Zn, Cd and As concentrations that exceed the water quality standards. However, the severity of contamination generally decreases 4 km downstream of the source due to mixing with fresh waters, which causes the dilution of dissolved toxic metals and neutralization of acidity. Some natural attenuation of the contaminants also occurs due to the general reduced solubility of most trace metals, which may be removed from solution, by either co-precipitation or adsorption to the iron and aluminium precipitates.  相似文献   

6.
Acid mine drainage (AMD) is one of the severe environmental problems that coal mines are facing. Generation of AMD in the northeastern part of India due to the coal mining activities has long been reported. However detailed geochemical characterization of AMD and its impact on water quality of various creeks, river and groundwater in the area has never been reported. Coal and coal measure rocks in the study area show finely disseminated pyrite crystals. Secondary solid phases, resulted due to oxidation of pyrite, occur on the surface of coal, and are mainly consisting of hydrated sulphate complexes of Fe and Mg (copiapite group of minerals). The direct mine discharges are highly acidic (up to pH 2.3) to alkaline (up to pH 7.6) in nature with high concentration of SO42−. Acidic discharges are highly enriched with Fe, Al, Mn, Ni, Pb and Cd, while Cr, Cu, Zn and Co are below their maximum permissible limit in most mine discharges. Creeks that carrying the direct mine discharges are highly contaminated; whereas major rivers are not much impacted by AMD. Ground water close to the collieries and AMD affected creeks are highly contaminated by Mn, Fe and Pb. Through geochemical modeling, it is inferred that jarosite is stable at pH less than 2.5, schwertmannite at pH less than 4.5, ferrihydrite above 5.8 and goethite is stable over wide range of pH, from highly acidic to alkaline condition.  相似文献   

7.
Epikarst water, which is one of the most important water resources in karst mountain areas, is extremely sensitive to mining activities. Acid mine drainage (AMD) with high levels of heavy metals can degrade the water quality. A typical coalfield basin was chosen to research the migration process of heavy metals. It was found that the chemical compositions of the stream water in the research field were controlled by the dissolution of carbonate rocks or/and the weathering and oxidation of pyrite in the mining area. Excluding a few sites in the mining area, As(V) was dominant species of arsenic in the form of H2AsO4 ? or HAsO4 2? in the research field. Based on the mass balance concept, it was found that fluxes of As, Zn, Cu and Cd in water from the mining area (site 17) affected by AMD were 18, 871, 281 and 12 kg year?1, respectively. Also, concentrations of Cd, Zn, As and Cu in the stream water decreased along the flow, because these ions deposited from the water to the stream bed as the redistribution processes in environment.  相似文献   

8.
This study was performed to investigate the operating status, evaluate the problems, and discuss possible improvement methods of passive treatment systems for acid mine drainage (AMD) in South Korea. Thirty-five passive treatment systems in 29 mines have been constructed from 1996 to 2002 using successive alkalinity producing systems (SAPS) as the main treatment process. We investigated 29 systems (two for metal mines), 19 of which revealed various problems. Overflows of drainage from SAPS, wetland, or oxidation ponds were caused by the flow rate exceeding the capacities of the facilities or by the reduced permeability of the organic substance layer. Leakages occurred at various parts of the systems. In some cases, clogged and broken pipes at the mouths of the mine adits made the whole system unusable. Some systems showed very low efficiencies without apparent leakage or overflow. Even though the systems showed fairly good efficiencies in metal removal ratios (mainly iron) and pH control; sulfate removal rates were very poor except in three systems, which may indicate very poor sulfate reductions with sulfate reducing bacteria (SRB) as a means.  相似文献   

9.
In this study, geochemical characteristics of acid mine drainage (AMD) and its sediments from the Malan and Sitai coalmines, Shanxi Province, China, were investigated. Many analytical approaches such as IC, ICP-MS, XRD, XRF, and modeling calculation of hydrogeochemistry using PHREEQCI software were employed. The AMD is characterized by higher concentrations of iron and sulfate, a low pH, and elevated concentrations of a wide variety of heavy metals. The results of modeling calculation by PHREEQCI software demonstrate the metals in AMD are present mainly as Me^n+ and MeSO4^n-2 species. The sediments of AMD are composed mainly of iron-beating minerals such as goethite and schwertmannite, which are controlled by pH, Fe and SO4^2- concentrations. The schwertmannite mineral has been found for the first time in China.  相似文献   

10.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

11.
 A few simple mass balance equations were developed to simultaneously estimate how much the pollutants from acid mine drainage (AMD) in stream water are diluted and removed during their migration. The application of the equations requires knowledge of the variations in the concentrations of the dissolved pollutants and the stoichiometry of the precipitation reaction of the pollutants when none of the pollutant shows a conservative behavior along the stream path. The calculation should be restricted to the pollutants showing much higher concentrations in the polluted main stream water than in the combining or diluting water of the same target area. The mass balance equations were applied to estimate the dilution factor and precipitation fractions of pollutants in Imgok Creek such as Fe, SO4 and Al from the AMD of Yeongdong mine. The results show that the estimation, especially for SO4 and Al, significantly depends on the kinds of the precipitates. When FeOHSO4 and AlOHSO4 are assumed to precipitate, the maximum removal fractions of SO4 and Al by precipitation are respectively 34% and 46% of the original input, which is much higher than the values estimated when SO4 is considered to be perfectly conservative. It indicates that the stoichiometry of precipitation reaction is very important in the interpretation of the pollutant dilution and migration and assessment of environmental impacts of AMD. The applicability of the mass balance equations may still need to be verified. However, examining the calculated dilution factor and precipitation fractions with the equations can provide invaluable information on not only the behavior but also unexpected input of the pollutants in the stream water polluted by AMD and other point sources. Received: 12 November 1997 · Accepted: 30 March 1998  相似文献   

12.
This study investigates the retention of heavy metals in secondary precipitates from a sulfidic mine rock dump and underlying podzolic soils by means of mineralogical and chemical extraction methods. The rock dump, which is at least 50 years old, consists of a 5–10-cm-thick leached zone and an underlying 110–115-cm-thick accumulation zone. Optical microscopy and electron microprobe analyses confirm that pyrrhotite weathering has proceeded much further in the leached horizon relative to the accumulation horizon. The weathering of sulfides in the leached zone has resulted in the migration of most heavy metals to the accumulation zone or underlying soils, where they are retained in more stable phases such as secondary ferric minerals, including goethite and jarosite. Some metals are temporarily retained in hydrated ferrous sulfates (e.g., melanterite, rozenite). Received: 28 October 1996 · Accepted: 24 February 1997  相似文献   

13.
A sulfur and trace element enriched U–Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4·7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.  相似文献   

14.
Acid mine drainage (AMD) has been recognized as a major environmental pollution problem over past decades. This pollutant effluent is complex and is characterized by elevated concentrations of iron and sulfate, low pH, and high concentrations of a wide variety of metals depending on the host rock geology. Massive inadvertent discharges from acid mines have given rise to dramatic cases of ecological damage. These events indicate an improved understanding of the mechanism controlling metal transport to the river is important, since the aquatic ecology will be affected, to some degree, dependent on the phase (dissolved or particulate) in which the metal is transported. In this study, polluted water samples were collected along the Hengshi River near the Dabaoshan mine, Guangdong, China, in April 2005. The concentrations of dissolved Cu, Zn, Cd and Pb have been determined using ICP-MS and the chemical speciation of those metals in suspended particles was examined using BCR methods and SEM/EDX mineralogical analysis. Combining these two sets of data, the intention was to develop geochemical concepts, which explain the behavior of Cu, Zn, Cd and Pb in particle-water interactions of heavy metals in AMD. The results show that the dissolved heavy metals exhibited non-conservative behavior in the Hengshi River. The dissolved and particulate Cu, Zn, Cd and Pb have the similar spatial distribution, which decreased gradually along the river except in the lower reaches because of the absorption-desorption between dissolved and particulate phases. Although the metal concentrations in both phases were elevated, dissolved metals were dominant and had the maximum concentrations in the low pH region.  相似文献   

15.
为探讨岩浆蚀变作用对煤层中锑赋存特征的影响,系统采集安徽淮北煤田卧龙湖煤矿岩浆侵入煤层侵入岩和全煤层样品共12个,利用原子荧光光谱法(AFS)测定样品中Sb含量,并对煤质参数进行分析。结果表明:卧龙湖煤矿岩浆侵入区煤表现为超低挥发分,中等灰分,特低硫的特点,煤中的硫主要以有机硫和黄铁矿硫存在。受岩浆热液影响,煤中灰分增加,挥发分减少;岩浆蚀变煤层中锑明显富集,算术平均值达到10.48 mg/kg,且侵入岩上方煤中Sb的平均含量明显增高,煤岩接触带位置Sb的含量达到最高值(13.93 mg/kg);岩浆蚀变煤中的锑主要以无机结合态形式存在(相关系数r为0.74),有机硫与煤中Sb呈显著负相关(相关系数r为-0.60)。岩浆侵入作用导致卧龙湖煤矿煤的煤质特征及煤层中锑的赋存方式受到不同程度的影响,研究结果可为特殊地质作用下煤中锑的环境地球化学特征提供参考。  相似文献   

16.
Different downstream variation patterns were observed for a range of bed sediment-borne metals (aqua regia-extractable fraction) in a subtropical stream system receiving acid mine drainage. Mine-originated Fe tended to be deposited in the acidic (mean pH < 4.9) upstream reach in forms of goethite and/or hematite. In contrast, other metals tended to be transported farther downstream and settled in a low-gradient reach with high pH (mean pH > 5.6). The peak of sediment-borne Al, Be, Ca, Cd, Co, Cu, La, Mn, Ni and Zn corresponded very well with the peak of the sediment-borne organic matter, suggesting a close association between the water-borne organic colloids and the inorganic metal oxides/hydroxides during their transport. The marked increase in the sediment-borne Al and Pb started more upstream than the other metals, suggesting that the water-borne Al and Pb were more susceptible to pH rise-induced precipitation, as compared to the other metals. It appeared that the organic colloids played no important role in Pb transport and settlement. The iron precipitates had a limited role to play in affecting the transport and fates of other metals since they were predominantly formed and deposited in the acidic reach, which made them incapable of scavenging cationic metals by co-precipitation or adsorption.  相似文献   

17.
嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)能够在低pH值条件下,迅速将Fe2+氧化并产生大量次生羟基硫酸铁沉淀,从而除去水中可溶性Fe2+。这为富含Fe2+的酸性矿山废水(acid mine drainage,AMD)处理提供了新的思路。本文从晶种刺激和阳离子诱导两个方面,分别研究了固定化载体(硅藻土、石英砂)和具有强诱导能力的成矾离子(K+)对微生物转化酸性体系中Fe2+成次生矿物的影响。结果表明,3种材料均有明显促进可溶性Fe2+向次生矿物转化的作用,且总铁(TFe)沉淀率与3种材料的添加量呈正相关关系。在起始Fe2+浓度为160mmol/L,硅藻土、石英砂和钾离子最大添加量分别为10 g、10 g和80 mmol/L时,经过72 h反应后,TFe沉淀率分别比对照增加了8%、24%和20%。矿物中的Fe、K和S元素含量与溶液中的起始K+浓度有非常密切的关系,随着K+浓度的增大,矿物中的K和S含量逐渐增加,而Fe含量则相应减少。  相似文献   

18.
本文以鹤岗煤田峻德、兴安两矿为例,作为典型的傍河型孔隙、裂隙充水矿床,对其矿床充水条件和充水来源组成进行了分析,确定鹤立河水侧向补给是矿井涌水的主要来源;通过多年矿井涌水量、补给组成及保障分析,得到其矿井涌水具备充足的补给来源、矿井水资源化具有较大可行性的结论,为此类矿床的研究提供了借鉴和参考。  相似文献   

19.
《Applied Geochemistry》2002,17(5):569-581
This study examined the sorption of trace metals to precipitates formed by neutralization of 3 natural waters contaminated with acid mine drainage (AMD) in the former Ducktown Mining District, Tennessee. The 3 water samples were strongly acidic (pH 2.2 to 3.4) but had distinctively different chemical signatures based on the mole fractions of dissolved Fe, Al and Mn. One sample was Fe-rich (Fe=87.5%, Al=11.3%, and Mn=1.3%), another was Al-rich (Al=79.4%, Mn=18.0%, and Fe=2.5%), and the other was Mn-rich (Mn=51.4%, Al=25.7%, and Fe=22.9%). In addition, these waters had high concentrations of trace metals including Zn (37,700 to 17,400 μg/l), Cu (13,000 to 270 μg/l), Co (1,500 to 520 μg/l), Ni (360 to 75 μg/l), Pb (30 to 8 μg/l), and Cd (30 to 6 μg/l). Neutralization of the AMD-contaminated waters in the laboratory caused the formation of either schwertmannite at pH<4 or ferrihydrite at pH>4. Both phases were identified by XRD analyses of precipitates from the most Fe-rich water. At higher pH values (∼5) Al-rich precipitates were formed. Manganese compounds were precipitated at pH∼8. The removal of trace metals depended on the precipitation of these compounds, which acted as sorbents. Accordingly, the pH for 50% sorption (pH50) ranged from 5.6 to 7.5 for Zn, 4.6 to 6.1 for Cu, 5.4 to 7.7 for Ni, 5.9 to 7.9 for Co, 3.1 to 4.3 for Pb, and 5.5 to 7.7 for Cd. The pH dependence of sorption arose not only because of changes in the sorption coefficients of the trace metals but also because the formation and composition of the sorbent was controlled by the pH, the chemical composition of the water, and the solubilities of the oxyhydroxide-sulfate complexes of Fe, Al, and Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号