首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 62 毫秒
1.
Performance of the fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model(MM5) over the Lake Nam Co region of the Tibetan Plateau was evaluated based on the data from five surface observation sites in 2006. The interaction between two thermally-induced circulations(lake breezes and mountain-valley winds) was also investigated. The results show that MM5 could be used to simulate 2-m air temperature; however, MM5 needs improvement in wind field simulation.Two numerical simulations were conducted to study the effect of the lake on the local weather and wind system. The original land cover of the model was used in the control experiment, and the lake was replaced with grassland resembling the area surrounding the lake in the sensitive experiment. The results of the simulations indicate that the lake enhanced the north slope mountain-valley wind and the mountain changed the offshore flow direction at the north shore. During the day, a clear convergent zone and a strong upflow were observed over the north slope of the Nyainq?entanglha Range, which may cause frequent precipitation over the north slope. During the night, the entire area was controlled by a south flow.  相似文献   

2.
2006—2011年西藏纳木错湖冰状况及其影响因素分析   总被引:2,自引:0,他引:2       下载免费PDF全文
湖冰是气候变化的指示器,为分析纳木错地区气候对湖冰冰情的影响,利用2006—2011年西藏纳木错(面积2000km2)和白马纳木错(面积1.45 km2)湖冰的观测资料,结合MODIS遥感影像资料分析了两个湖泊完全冻结日期、完全解冻日期、封冻期、湖冰厚度的状况及其与气温和风速的关系。纳木错湖湖冰冰情主要受气温的影响,同时也受风速的影响。纳木错湖的完全冻结日期集中在2月,完全解冻日期在5月中旬,封冻期平均天数为90 d,封冻期与冬季负积温具有较好的对应关系。面积较小的白马纳木错冰情的年际波动较大,其平均封冻期为124 d。纳木错湖的最大冰厚一般出现在3月,其厚度为58~65 cm。  相似文献   

3.
王文波  杨明  王旭  梁倩  封雅琼 《气象科技》2014,42(3):466-473
利用青藏高原中东部地区16个探空站的1979—2008年各标准等压面上的月平均探空资料对青藏高原中东部地区500~200hPa高层水汽冬夏季时空分布特征及变化趋势进行了研究,结果表明:①空间分布上,青藏高原的水汽空间分布冬夏两季呈现出一致明显的西北—东南走向,高原南部水汽年际变化波动较大,北部较稳定;夏冬两季水汽总体呈现一致变化,同时夏季还存在南北向的反相位区域异常变化,冬季则表现为东西向的反相位变化;②时间变化上,青藏高原夏季水汽总体呈现出较弱的上升趋势,1979—1995年水汽有下降趋势,1996—2005年转为增加趋势,突变主要在1997、2006年;冬季水汽总体为弱下降趋势,1979—1984年水汽为下降趋势,1985—2004年增长并保持稳定,突变主要在1986、2005年;同时青藏高原水汽还存在西部水汽增加而东部水汽呈减少趋势的区域变化特征。  相似文献   

4.
青藏高原近40年的降水变化及水汽输送分析   总被引:12,自引:5,他引:12  
利用中国青藏高原地区1961—2000年56个气象站的逐月降水资料,分析了青藏高原地区1961—2000年的降水量变化趋势及水汽输送。结果表明,青藏高原40 a降水量呈增加趋势,线性增长率为1.12 mm/a。高原南区年降水量呈增加的趋势,线性增长率为1.97 mm/a;北区年降水量变化较小。青藏高原降水量在1978年由少雨期转为多雨期,青藏高原夏季降水与孟加拉湾的水汽输送及副高的水汽输送关系密切。  相似文献   

5.
通过分析北半球和青藏高原地面平均气温与它们上空500hPa平均温度、200一500hPa平均厚度在不同时期和不同纬度带的趋势变化特征,了解其地面气温和其对流层中上层温度的年代际变化趋势以及相互关系。可以看到近50a地面气温和500hPa温度年代际变化大致相同,20世纪70年代中期之前都为降温,70年代中期以后为不同程度的升温。200—500hPa厚度代表的对流层上层温度与对流层下层温度变化趋势相反,70年代前明显升温,70年代后明显降温。分析还表明,对流层各层温度在不同纬度和不同季节的变化也不同。  相似文献   

6.
青藏高原植物返青期变化及其对气候变化的响应   总被引:5,自引:0,他引:5       下载免费PDF全文
基于连续的植被指数(NDVI)、气温和降水数据,提取了1982—2009年青藏高原典型台站邻近区域的植物返青期以及0℃和5℃旬均温始期的时序数据,分析了其时空变化特征,探讨了青藏高原冬、春季的气温、降水变化对植物返青期的影响。结果表明:1) 青藏高原典型台站邻近区域植物返青期多年平均值在东西向和南北向上存在显著差异;1982—2009年间,青藏高原典型台站邻近区域植物返青期整体呈提前趋势。2) 青藏高原典型台站0℃和5℃旬均温始期整体呈提前趋势,5℃旬均温始期提前趋势更为显著。3) 青藏高原植物返青期随着冬、春季气温升高和降水增加而提前。与降水相比,返青期与气温的相关程度更高。冬季气温比春季气温对植物返青期的影响更大。  相似文献   

7.
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号