首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the development of a wave prediction system for the west Iberian coast. The implemented wave prediction system is based on two state-of-the-art spectral wave models, WAM for the ocean area and SWAN for the nearshore. However, because of its extended geographical space the SWAN model will include some generation effects in the coarse SWAN simulations, complemented by wave transformation effects near the coast. The system was validated by means of extended hindcast runs in various regions belonging to the continental Portuguese coastal environment, which were compared with buoy data, focusing on the extreme energetic events and both direct comparisons and statistical results are presented.  相似文献   

2.
3.
The paper compares the wave hindcast in the Western Mediterranean sea using the reanalysis wind fields from HIPOCAS and ERA-40 from ECMWF for November 2001. The study has concentrated on the Mediterranean coast of Spain where there are known difficulties with the wind and wave modelling. Two winter storms have been compared. The main differences between the significant wave heights using the ERA-40 reanalysis (ECMWF) and HIPOCAS reanalysis winds were observed to increase when moving southwards in the geographical domain at the offshore locations. Systematic negative biases of Hs were obtained with the ERA-40 data at all the coastal locations analyzed, whereas positive biases are typical for the HIPOCAS reanalysis. For offshore and coastal locations when using the ERA-40 data the Hs biases increased moving to South, while this pattern was not so clear for the HIPOCAS data. The inconsistencies in the comparisons of modelled waves against measurements seem to be associated with the quality of the wind fields.  相似文献   

4.
This paper evaluates the impact of using different wind field products on the performance of the third generation wave model SWAN in the Black Sea and its capability for predicting both normal and extreme wave conditions during 1996. Wind data were obtained from NCEP CFSR, NASA MERRA, JRA-25, ECMWF Operational, ECMWF ERA40, and ECMWF ERA-Interim. Wave data were obtained in 1996 at three locations in the Black Sea within the NATO TU-WAVES project. The quality of wind fields was assessed by comparing them with satellite data. These wind data were used as forcing fields for the generation of wind waves. Time series of predicted significant wave height (Hmo), mean wave period (Tm02), and mean wave direction (DIR) were compared with observations at three offshore buoys in the Black Sea and its performance was quantified in terms of statistical parameters. In addition, wave model performance in terms of significant wave height was also assessed by comparing them against satellite data.The main scope of this work is the impact of the different available wind field products on the wave hindcast performance. In addition, the sensitivity of wave model forecasts due to variations in spatial and temporal resolutions of the wind field products was investigated. Finally, the impact of using various wind field products on predicting extreme wave events was analyzed by focussing on storm peaks and on an individual storm event in October 1996. The numerical results revealed that the CFSR winds are more suitable in comparison with the others for modelling both normal and extreme events in the Black Sea. The results also show that wave model output is critically sensitive to the choice of the wind field product, such that the quality of the wind fields is reflected in the quality of the wave predictions. A finer wind spatial resolution leads to an improvement of the wave model predictions, while a finer temporal resolution in the wind fields generally does not significantly improve agreement between observed and simulated wave data.  相似文献   

5.
The subject of the investigation was the multiyear hindcast of the sea level elevations and currents over the Baltic Sea. The approach follows to the HIPOCAS project conception and contained the 3D hydrodynamic model using boundary conditions from the atmosphere and catchment for 44-year period referring to the second half of the 20th century.  相似文献   

6.
A set of 44-year (1958–2001) homogeneous and high-resolution hindcasts of atmospheric, sea level residuals, and wave states was performed for the Mediterranean Basin within the framework of the HIPOCAS European Project. To this aim, different numerical models were used. As a first step, a Mediterranean high-resolution atmospheric database, suitable to provide realistic and homogeneous forcing for ocean hindcast runs was generated. The HIPOCAS atmospheric database was created by means of dynamical downscaling from the global reanalysis NCEP, using for that the limited area model SN-REMO along with a spectral nudging technique. In a second stage, different Mediterranean oceanic hindcasts were performed. On one hand a long-term database of sea state over the western Mediterranean was generated by means of the wave model WAM and on the other hand a sea level residual database containing storm surge events was obtained from a long-term integration of the HAMSOM model over the entire basin. The three different hindcast runs have been exhaustively validated. On that score, various simulated parameters have been compared to both satellite and in situ measurements. Such comparisons provide a measure of the skills of the different simulated fields to realistically reproduce the observed features. Once these skills are evaluated, a study of the ocean and atmospheric climate trends as well as the interannual variability for the whole 44-year period was carried out with the hindcasted data. The reliability of the data as shown by its comparison to measurements and a proven temporal homogeneity over the 44 years of simulation make the Mediterranean HIPOCAS ocean–atmosphere hindcasted database a useful tool for studies focused on regional climatic variability, as well as for further applications in coastal and environmental decision processes in the Mediterranean area.  相似文献   

7.
It is often claimed that the Black Sea is one of the most degraded seas in the world. Management to rehabilitate the Black Sea requires cooperation between the coastal countries to be successful. However, regional cooperation in the Black Sea is poorly coordinated and lack concrete outcomes. This article analyses the performance of the Black Sea Commission in terms of enabling and fostering effective regional collaboration between the Black Sea coastal countries. The results indicate that the measures undertaken by the Black Sea Commission are effective in terms of enabling scientific and project based cooperation between the Black Sea countries. The cooperation around regional and national institutional reforms to tackle the Black Sea environmental problems is found to be weak. Despite the existing mechanisms and willingness of countries to cooperate, the implementation of the established strategic action plan for the environmental protection and rehabilitation of the Black Sea is limited. Most of the limitations of the Black Sea Commission's regime are found in its institutional and legal frameworks, which constrain the effectiveness of collaborative efforts of the Black Sea countries. To be fully functional, the collaborative governance regime of the Black Sea Commission has to be improved. Recommendations as to how these may be addressed to enhance the regime's capacity to ensure effective marine collaborative governance in the region are presented in this article.  相似文献   

8.
Analysis of freak wave measurements in the Sea of Japan   总被引:3,自引:0,他引:3  
This paper presents an analysis of a set of available freak wave measurements gathered from several periods of continuous wave recordings made in the Sea of Japan during 1986–1990 by the Ship Research Institute of Japan. The analysis provides an ideal opportunity to catch a glimpse of the statistics of freak waves in the ocean. The results show that a well-defined freak wave may occur in the developed wind–wave condition: S(f)∝f−4, with single-peak directional spectra. The crest and trough amplitude distributions of the observed sea waves including freak waves are different from the Rayleigh distribution, although the wave height distribution tends to agree with the Rayleigh distribution. Freak waves can be readily identified from the wavelet spectrum where a strong energy density occurs in the spectrum, and is instantly surged and seemingly carried over to the high-frequency components at the instant the freak wave occurs.  相似文献   

9.
A 1999 survey of the Black Sea continental shelf off the north central Turkish seaport of Sinop using a side-scan sonar, small remotely operated vehicles, and a series of dredge lowerings located, inspected and sampled an exposed high-energy paleoshoreline at a depth of 155 m. Radiocarbon dating of mollusk shells collected from this ancient beach revealed that the marine flooding of the Black Sea took place between 7460 and 6820 yr B.P. (all ages are reported in radiocarbon years, not calendar years, without correction for reservoir age or dendro-calibration) changing it from a lacustrine to marine environment. This relic surface remained in contact with the bottom waters of the Black Sea for a long period of time before being draped by a thin layer of sapropel mud. Wood samples recovered from this same location were very well preserved and yielded dates as old as 3580 yr B.P.  相似文献   

10.
The surface waves in the Baltic Sea are hindcast with the spectral wave model HYPAS during a 12-month period. The model results show a strong temporal and spatial variation in the wave field due to the physical dimensions of the different basins and the predominant wind field. The highest waves in the area are found in the outer part of Skagerrak, as well as in the central and southern parts of the Baltic Proper. To get significant waves above 6 m high, strong winds (15–20 m/s) must have been blowing for 6 to 24 h from a favourable direction over a deep area.  相似文献   

11.
Diffusion reduction in an arbitrary scale third generation wind wave model   总被引:1,自引:0,他引:1  
The numerical schemes for the geographic propagation of random, short-crested, wind-generated waves in third-generation wave models are either unconditionally stable or only conditionally stable. Having an unconditionally stable scheme gives greater freedom in choosing the time step (for given space steps). The third-generation wave model SWAN (“Simulated WAves Nearshore”, Booij et al., 1999) has been implemented with this type of scheme. This model uses a first order, upwind, implicit numerical scheme for geographic propagation. The scheme can be employed for both stationary (typically small scale) and nonstationary (i.e. time-stepping) computations. Though robust, this first order scheme is very diffusive. This degrades the accuracy of the model in a number of situations, including most model applications at larger scales. The authors reduce the diffusiveness of the model by replacing the existing numerical scheme with two alternative higher order schemes, a scheme that is intended for stationary, small-scale computations, and a scheme that is most appropriate for nonstationary computations. Examples representative of both large-scale and small-scale applications are presented. The alternative schemes are shown to be much less diffusive than the original scheme while retaining the implicit character of the particular SWAN set-up. The additional computational burden of the stationary alternative scheme is negligible, and the expense of the nonstationary alternative scheme is comparable to those used by other third generation wave models. To further accommodate large-scale applications of SWAN, the model is reformulated in terms of spherical coordinates rather than the original Cartesian coordinates. Thus the modified model can calculate wave energy propagation accurately and efficiently at any scale varying from laboratory dimensions (spatial scale O(10 m) with resolution O(0.1 m)), to near-shore coastal dimension (spatial scale O(10 km) with resolution O(100 m)) to oceanic dimensions (spatial scale O(10 000 km) with resolution O(100 km).  相似文献   

12.
A one-dimensional coupled physical-biogeochemical model has been developed to simulate the ecosystem of the central Black Sea at the end of the 1980s when eutrophication and invasion by gelatinous organisms seriously affected the stability and dynamics of the system. The physical model is the General Ocean Turbulence Model (GOTM) and the biogeochemical model describes the foodweb from bacteria to gelatinous carnivores through 24 state variables including three groups of phytoplankton: diatoms, small phototrophic flagellates and dinoflagellates, two zooplankton groups: micro- and mesozooplankton, two groups of gelatinous zooplankton: the omnivorous and carnivorous forms, an explicit representation of the bacterial loop: bacteria, labile and semi-labile dissolved organic matter, particulate organic matter. The model simulates oxygen, nitrogen, silicate and carbon cycling. In addition, an innovation of this model is that it explicitly represents processes in the anoxic layer. Biogeochemical processes in anaerobic conditions have been represented using an approach similar to that used in the modeling of diagenetic processes in the sediments lumping together all the reduced substances in one state variable [Soetaert, K., Herman, P., 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta 60 (6) 1019-1040]. In this way, processes in the upper oxygenated layer are fully coupled with anaerobic processes in the deep waters, allowing to perform longterm simulations.The mathematical modeling of phytoplankton and zooplankton dynamics, detritus and the microbial loop is based on the model developed by Van den Meersche et al. [Van den Meersche, K., Middelburg, J., Soetaert, K., van Rijswijk P.H.B., Heip, C., 2004. Carbon-nitrogen coupling and algal-bacterial interactions during an experimental bloom: Modeling a 13c tracer experiment. Limnology and Oceanography 49 (3), 862-878] and tested in the modeling of mesocosm experiments and of the Ligurian sea ecosystem [Raick, C., Delhez, E., Soetaert, K., Gregoire, M., 2005. Study of the seasonal cycle of the biogeochemical processes in the Ligurian sea using an 1D interdisciplinary model. Journal of Marine Systems 55 (3-4) 177-203]. This model has been extended to simulate the development of top predators, the aggregation of detritus as well as the degradation and chemical processes in suboxic/anoxic conditions (e.g. denitrification, anoxic remineralization, redox reactions).The coupled model extends down to the sediments ( depth) and is forced at the air-sea interface by the 6 hourly ERA-40 reanalysis of ECMWF data. The model has been calibrated and validated using a large set of data available in the Black Sea TU Ocean Base. The biogeochemical model involves some hundred parameters which are first calibrated by hand using published values. Then, an identifiability analysis has been performed in order to determine a subset of identifiable parameters (i.e. ensemble of parameters that can be together estimated from the amount of data we have at our disposal, see later in the text). Also a subset of 10 identifiable parameters was isolated and an automatic calibration subroutine (Levenberg Marquart) has been used to fine tune these parameters. Additionally, in order to assess the sensitivity of model results to the parameterization of the two gelatinous groups, Monte Carlo simulations were performed perturbing all the parameters governing their dynamics.In order to calibrate the particle dynamics and export, the chemical model was run off-line with the particle and microbial loop model in order to check its capacity of simulating anoxic waters. After a 104 year run, the model simulated profiles similar to observations but steady state was not reached suggesting that the Black Sea deep waters are not at steady state. The fully coupled model was then used to simulate the period 1988-1992 of the Black Sea ecosystem. The model solution exhibits a complex dynamics with several years of transient adjustment. This complexity is imparted by the explicit modeling of top predators. The integrated chlorophyll and phytoplankton biomasses, the maximum concentration and depth of maximum, mesozooplankton biomass, depth of oxycline, primary production, bacterial production, surface concentrations of nutrients and plankton simulated by the model and obtained from available data analysis were compared and showed a satisfactory agreement. Also, as in the data, the model shows a continuous development of phytoplankton throughout the year, with an intense spring bloom dominated by diatoms and a fall bloom dominated by dinoflagellates. Dinoflagellates dominate from summer until late fall while small phototrophic flagellates are never dominant in terms of biomass, but are present almost throughout the year except in winter. The model simulates an intense silicate removal associated to increased diatoms blooms which were promoted by increased nutrient conditions, and by the presence of gelatinous zooplankton. This silicate pumping leads to silicate limitation of diatoms development in summer allowing the development of dinoflagellates.  相似文献   

13.
Sea ice is highly complex due to the inhomogeneity of the physical properties (e.g. temperature and salinity) as well as the permeability and mixture of water and a matrix of sea ice and/or sea ice crystals. Such complexity has proven itself to be difficult to parameterize in operational wave models. Instead, we assume that there exists a self-similarity scaling law which captures the first order properties. Using dimensional analysis, an equation for the kinematic viscosity is derived, which is proportional to the wave frequency and the ice thickness squared. In addition, the model allows for a two-layer structure where the oscillating pressure gradient due to wave propagation only exists in a fraction of the total ice thickness. These two assumptions lead to a spatial dissipation rate that is a function of ice thickness and wavenumber. The derived dissipation rate compares favourably with available field and laboratory observations.  相似文献   

14.
A sudden increase in salinity about 7000 years ago caused a shift in the deposited sediments of the Black Sea from limnic to brackish-marine. Due to the development of an anoxic deep water basin and a relatively high sulfate concentration, organic matter is mineralized primarily through sulfate reduction in modern Black Sea sediments. Earlier studies showed that sulfate-reducing bacteria are abundant within the limnic sub-surface sediment in spite of extremely low concentrations of sulfate and organic carbon. A main objective of the present study was therefore to understand the depth distribution of sulfate reduction across the different sediment units, even deep below the sulfate-methane transition. Our study combined experimental measurements of sulfate reduction using 35S radiotracer with analyses of sulfur and iron geochemistry in pore water and sediment. Potential sulfate reduction rates were measured with 35S in sediment samples that were amended with sulfate and organic substrates and incubated in time-series up to 48 h. Sulfate reduction could thereby be detected and quantified at depths where concentrations of sulfate were otherwise too low to enable calculation of the rates. The results demonstrate that sulfate-reducing bacteria are active several meters below the sulfate-methane transition in Black Sea sediments. The cryptic sulfate reduction below the sulfate-methane transition may be driven by sulfate produced from re-oxidation of reduced sulfur species with oxidized iron minerals buried in the deep limnic sediment.  相似文献   

15.
Meiobenthos densities and higher taxon composition were studied in an active gas seepage area at depths from 182 to 252 m in the submarine Dnieper Canyon located in the northwestern part of the Black Sea. The meiobenthos was represented by Ciliata, Foraminifera, Nematoda, Polychaeta, Bivalvia, Gastropoda, Amphipoda, and Acarina. Also present in the sediment samples were juvenile stages of Copepoda and Cladocera which may be of planktonic origin. Nematoda and Foraminifera were the dominant groups. The abundance of the meiobenthos varied between 2397 and 52,593 ind.·m−2. Maximum densities of Nematoda and Foraminifera were recorded in the upper sediment layer of a permanent H2S zone at depths from 220 to 250 m. This dense concentration of meiobenthos was found in an area where intense methane seeps were covered by methane‐oxidizing microbial mats. Results suggest that methane and its microbial oxidation products are the factors responsible for the presence of a highly sulfidic and biologically productive zone characterized by specially adapted benthic groups. At the same time, an inverse correlation was found between meiofauna densities and methane concentrations in the uppermost sediment layers. The hypothesis is that the concentration of Nematoda and Foraminifera within the areas enriched with methane is an ecological compromise between the food requirements of these organisms and their adaptations to the toxic H2S.  相似文献   

16.
The Archimedes Wave Swing (AWS) pilot plant, rated at 2 MW, was tested offshore at Póvoa de Varzim in northern Portugal in 2004, gathering a large team of engineers and scientists. The Mechanical Engineering Department of Instituto Superior Técnico was involved, following previous work done for the project. The present paper describes one of the studies conducted. It aims to characterise the sea state at the actual location of the pilot plant using the available pressure sensors. Two approaches were performed: a first one purely based in linear wave theory, neglecting the presence of the device, and a second one, based on the results from a Boundary Element Method (BEM) code named AQUADYN, originally developed at École Centrale de Nantes (France), which allowed a detailed quantification of the effects of the presence of the plant on the wave profile directly above it. Comparisons with a Datawell Waverider buoy located at a certain distance from the plant also played an important role in the current study.  相似文献   

17.
We have hindcast the wind and wave conditions in the Mediterranean Sea for two one month periods. Four different meteorological models and three different wave models have been used. The results have been compared with satellite and buoy wind and wave observations.Several conclusions concerning both the instruments and the models have been derived. The quality of both wind and wave results has been assessed. Close to the coasts high resolution, nested wave models are required for sufficient reliability.A wave threshold analysis suggests a sufficient reliability only off the coast, with a substantial decrease for low wave heights.  相似文献   

18.
Within the framework of the European project EROS 21, a biogeochemical study of particles transported from the Danube Delta to the Northwestern Black Sea whose carbon cycle is dominated by riverine inputs was carried out in spring off the Sulina branch of the Danube Delta. The distribution of particulate organic carbon (POC), chlorophyll a (Chl a), C/N, and δ13C evidenced an omnipresent contribution of terrestrial organic matter throughout the study area together with a dilution of these inputs by freshwater and marine organisms. Four lipid series, n-alkanoic acids, n-alkanes, n-alkanols, and sterols were analyzed by gas chromatography and gas chromatography/mass spectrometry. Several signature compounds were selected to delineate dispersion of terrestrial organic carbon: (1) long-chain n-alkanoic acids in the range C24–C34, long-chain n-alkanes in the range C25–C35, long-chain n-alkanols in the range C22–C30, 24-ethylcholesta-5,22-dien-3β-ol (29Δ5,22) and 24-ethylcholesterol (29Δ5) for vascular plant-derived material and (2) coprostanol (27Δ0,5β) for faecal contamination associated with sewage effluents. A marked decrease was observed between the concentrations of different vascular plant markers characterizing the two end members: riverine at salinity 0.3 and marine at salinity 15.5. The decrease observed for marine/riverine end members (expressed as a function of organic carbon) varied in a large range, from 4% for n-alkanes to 18.6%, 20.4% and 24% for n-fatty acids, n-alkanols and sterols, respectively. These values reflect a combination of various processes: size-selective particle sedimentation, resuspension of different particle pools of different sizes and ages, and/or selective biological utilization. The multi-marker approach also suggested the liberation in the mixing zone of terrestrial moieties, tightly trapped in macromolecular structures of the riverine material. The greatest decrease for marine/riverine end members was observed for coprostanol (0.9%), underlining the efficiency of the mixing zone as a sink for sewage-derived carbon.  相似文献   

19.
Spectral observations from pitch-and-roll buoys have been assimilated in a North Sea wave model, in order to study their impact on the wave analysis and forecast. The assimilation is based on Optimal Interpolation (OI) of a limited number of characteristic spectral parameters. In a case study, the propagation of the corrections through the model domain is followed, and it is clarified for which wave conditions the data assimilation has the largest influence on the forecast: this is especially the case for swell waves with long travel times between the assimilation site and the location where validation is carried out. A 1-year test has been carried out in which an analysis and subsequent forecast were produced four times a day. From a statistical analysis of the results a modest but systematic improvement of the 12-h forecast is found. When only swell cases are selected, the impact is more pronounced. It is argued that for shelf seas like the North Sea, more progress is to be expected from extension of the ‘conventional' observations network (buoys and wave radars) than from satellite measurements.  相似文献   

20.
The sedimentary sequence in the Western Black Sea region of Turkey both onshore and offshore offers many possibilities for different hydrocarbon plays. This study presents a new play, which considers Carboniferous coals and shales as source beds, Cretaceous sandstones as reservoirs and Cretaceous shales and marls as seal rocks. The evaluation of this play is performed using the petroleum system approach. Results suggest that the coals and shales have a good to very good source rock potential for gas, that the Cretaceous synrift sandstones are good reservoirs. On the other hand, the sealing efficiency of respective Cretaceous units is assumed to be sufficient based on their lithological (shales and carbonaceous marls) characteristics. Stratigraphic traps, which formed by transgression and by onlap on paleohighs, were sealed and potentially available at 97 million years (ma) before present. Structural traps related to Early Cretaceous extension were also sealed around 97 ma. On the contrary, traps formed by folding and thrusting during the Alpine orogeny only formed during the last 50 ma. The timing of gas generation and migration was determined by one and two-dimensional basin modeling in one well and along a cross-section. The modeling results indicated that during the period between 90 and 42 ma, large volumes of gas were generated from the Carboniferous source rocks. Comparison with the age of stratigraphic and structural traps showed that stratigraphic and normal fault traps were potentially available for the entire volume of generated gas and that the other structural traps associated with Alpine orogeny were available only for gas generated and/or re-migrated during the last 50 ma. The evaluation of this new play results in the conclusion, that the Western Black Sea region is worthy of further exploration for conventional accumulations of thermogenic gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号