共查询到6条相似文献,搜索用时 0 毫秒
1.
The measurement of water wave characteristics, such as wavelength and wave height, in the surf zone is important for monitoring, prediction of erosion, and numerical model calibration. Traditional methods of measuring wave heights have either been limited to a small number of points or have required contact with the water. An experimental study of the remote sensing of water wave elevations, through the application of stereo photogrammetry, is presented. This method uses two spatially offset cameras, with overlapping fields of view, to determine water surface elevation. This remote sensing approach provides data with excellent spatial coverage and spatial and temporal resolution. Additionally, the hardware needs are minimal and the system is quickly deployed, calibrated, and operational. 相似文献
2.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope. 相似文献
3.
A boundary layer flow under spilling breakers in a laboratory surf zone with a smooth bottom is investigated using a high resolution particle image velocimetry (PIV) technique. By cross-correlating the images, oscillatory velocity profiles within a viscous boundary layer of O(1) mm in thickness are resolved over ten points. Using PIV measurements taken for an earlier study and the present study, flow properties in the wave bottom boundary layer (WBBL) over the laboratory surf zone are obtained, including the mean velocities, turbulence intensity, Reynolds stresses, and intermittency of coherent events. The data are then used to estimate the boundary layer thickness, phase variation, and bottom shear stress. It is found that while the time averaged mass transport inside the WBBL is onshore in the outer surf zone, it changes to offshore in the inner surf zone. The zero Eulerian mass transport occurs at h/hb ≈ 0.92 in the outer surf zone. The maximum overshoot of the streamwise velocity and boundary layer thickness are not constant across the surf zone. The bottom shear stress is mainly contributed by the viscous stress through mean velocity gradient while the Reynolds stress is small and negligible. The turbulence level is higher in the inner surf zone than that in the outer surf zone, although only a slight increase of turbulent intensity is observed inside the WBBL from the outer surf zone to the inner surf zone. The variation of phase inside and outside the WBBL was examined through the spatial velocity distribution. It is found the phase lead is not constant and its value is significantly smaller than previous thought. By analyzing instantaneous velocity and vorticity fields, a remarkable number of intermittent turbulent eddies are observed to penetrate into the WBBL in the inner surf zone. The size of the observed large eddies is about 0.11 to 0.16 times the local water depth. Its energy spectra follow the − 5/3 slope in the inertial subrange and decay exponentially in the dissipation subrange. 相似文献
4.
Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure 总被引:2,自引:0,他引:2
A numerical method for non-hydrostatic, free-surface, irrotational flow governed by the nonlinear shallow water equations including the effects of vertical acceleration is presented at the aim of studying surf zone phenomena. A vertical boundary-fitted grid is used with the water depth divided into a number of layers. A compact finite difference scheme is employed for accurate computation of frequency dispersion requiring a limited vertical resolution and hence, capable of predicting the onset of wave breaking. A novel wet–dry algorithm is applied for a proper handling of moving shoreline. Mass and momentum are strictly conserved at discrete level while the method only dissipates energy in the case of wave breaking. The numerical results are verified with a number of tests and show that the proposed model using two layers without ad-hoc assumptions enables to resolve propagating nonlinear shoaling, breaking waves and wave run-up within the surf and swash zones in an efficient manner. 相似文献
5.
Requirements for monitoring the coastal zone environment are first summarized. Then the application of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coast beaches and bottom matter, target recognition, mine detection, oil spill identification and ocean color remote sensing. Finally, what is needed to follow on in application of hyperspectral remote sensing to coast environment is recommended. 相似文献
6.
Remote estimation of surficial seafloor properties through the application Angular Range Analysis to multibeam sonar data 总被引:2,自引:2,他引:2
The variation of the backscatter strength with the angle of incidence is an intrinsic property of the seafloor, which can
be used in methods for acoustic seafloor characterization. Although multibeam sonars acquire backscatter over a wide range
of incidence angles, the angular information is normally neglected during standard backscatter processing and mosaicking.
An approach called Angular Range Analysis has been developed to preserve the backscatter angular information, and use it for
remote estimation of seafloor properties. Angular Range Analysis starts with the beam-by-beam time-series of acoustic backscatter
provided by the multibeam sonar and then corrects the backscatter for seafloor slope, beam pattern, time varying and angle
varying gains, and area of insonification. Subsequently a series of parameters are calculated from the stacking of consecutive
time series over a spatial scale that approximates half of the swath width. Based on these calculated parameters and the inversion
of an acoustic backscatter model, we estimate the acoustic impedance and the roughness of the insonified area on the seafloor.
In the process of this inversion, the behavior of the model parameters is constrained by established inter-property relationships.
The approach has been tested using a 300 kHz Simrad EM3000 multibeam sonar in Little Bay, NH. Impedance estimates are compared
to in situ measurements of sound speed. The comparison shows a very good correlation, indicating the potential of this approach for
robust seafloor characterization. 相似文献