首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution electron microscope studies have been carried out on ‘zero-age’ (New Flow) basalts from the Juan de Fuca Ridge and on young (< 20 ka) basalts from the axis of the East Pacific Rise at 12°N. Such data lead to characterization of the magnetic minerals, especially those of smaller grain size, which have been hypothesized by Kent and Gee to have undergone grain size-dependent alteration. In addition to larger titanomagnetite grains, abundant submicrometer titanomagnetite has been observed in globules within a glassy matrix. These grains, likely to be single-domain (SD) or superparamagnetic, are associated with apatite, uncommon pyrrhotite and residual glass. The submicrometer titanomagnetite grains have a wide compositional range (0 < x < 0.8), where x is the fraction of ulvöspinel component, whereas the larger, multi-domain (MD)-sized titanomagnetite grains have a narrow composition range of approximately x = 0.6. This variability in Ti content provides a ready explanation for the thermal rock magnetic properties observed by Kent and Gee and eliminates the need to invoke extremely rapid (< 20 ka) alteration of these young basalts.  相似文献   

2.
Curie temperatures, hysteresis, alternating field properties and anhysteretic and ordinary susceptibilities have been used to characterize the titanomagnetites in a large collection of continental granites, diorites, syenites, anorthosites, gabbros, diabases and basalts. Low-Curie-point titanomagnetites or titanomaghemites were found only in basalts. In all shallow and deep-seated intrusive rocks, the predominant magnetic phase was nearly-titanium-free titanomagnetite with a Curie point of 520–580°C. Most felsic plutonic rocks owed their magnetic properties to coarse, discrete titanomagnetites with truly multidomain properties. Many mafic plutonic rocks (anorthosites, gabbros, norites) displayed bimodal magnetic properties, strong-field properties being due to the discrete titanomagnetites and weak-field properties being due to fine magnetite inclusions in deuterically altered silicates. The Lowrie-Fuller test and the anhysteretic induction curve were the most diagnostic tests of this bimodal behaviour. Grain-size variation within a single diabase dike or sill had a strong expression in all magnetic properties, except HR/Hc and the Lowrie-Fuller test. On the other hand, the Lowrie-Fuller test was a sensitive indicator of changes in “effective” grain size in basalts due to the subdivision of grains by ilmenite lamellae.  相似文献   

3.
Magnetic hysteresis of coarse-grained titanomagnetites at room temperature is characterised by low coercive force, low relative remanence, and a high ratio of coercivity of remanence to coercive force. These properties are generally interpreted in terms of multidomain structure. At low temperatures, however, ulvöspinel-rich compositions exhibit hysteresis properties similar to those of single-domain assemblages, and on this basis Radhakrishnamurty and Deutsch have proposed an alternative interpretation of the domain structure of titanomagnetites having x 0.3 in terms of a mixture of single-domain and superparamagnetic particles. Low apparent Curie temperatures are attributed to the effects of thermal agitation above the blocking temperature.

We have examined theoretically the effects of thermal agitation on the low- and high-field thermomagnetic curves and find that observed Curie temperatures in general represent an intrinsic property of the magnetic mineral present, rather than reflecting thermal agitation. The high coercive force and relative remanence at low temperatures for titanomagnetites having x > 0.5 can be explained on the basis of the interaction of domain walls with crystal defects when the large increases in magnetocrystalline anisotropy and magnetostriction with decreasing temperature are taken into account. We discuss the evidence for the existence of domain walls in coarse-grained ulvöspinel-rich titanomagnetites and conclude that multidomain structure is well established.

It is also shown that fine titanomagnetite grains may have more than one blocking temperature. In any temperature interval for which superparamagnetic grains are present they will disproportionately influence susceptibility and low-field hysteresis.  相似文献   


4.
A Precambrian metadolerite dyke has two distinct types of remanence carriers; those with medium/high coercivities (unblocking fields of 20–120 mT) and those with low coercivities (unblocking fields of <15 mT). Optical examination reveals numerous submicron probably opaque inclusions in the plagioclase feldspar and also large opaque grains consisting of coarse oxidation-exsolution intergrowths of magnetite and ilmenite. All opaque phases have been examined using transmission electron microscopy together with microanalysis and electron diffraction. The submicron inclusions in the plagioclase are titanomagnetites(0 < x ≤ 0.14) with a size range between about 0.01 and 0.5 μm and axial ratios between 1 (equidimensional) and about 0.3. Many of these inclusions fall in the single-domain field but some are probably pseudo-single-domain. The large opaque grains contain almost pure magnetite and ilmenite and show no fine-scale exsolution; the magnetite regions of the intergrowths are of multidomain size and reveal multidomain structure under Lorentz electron microscopy. There are also some primary ilmenites containing very fine exsolved haematite, and there are very fine plates of ilmenite and very elongate needles of magnetite within the augite. Experiments on artificial samples containing very carefully prepared separates of plagioclase and large opaque grains show that the pure plagioclase acquires a remanence with unblocking fields of 20–140 mT and blocking temperatures of 390–590°C and the large opaque grains acquire a remanence with unblocking fields of less than 15 mT but a wide range of blocking temperatures up to about 570°C. It is concluded that the medium/high coercivity component of remanence in the rock is carried largely or possibly entirely by the submicron magnetites within the plagioclase and that the low coercivity component is carried largely or entirely by the multidomain magnetites in the large opaques. The contribution of the magnetite needles in the augite is uncertain as the rock does not contain any detectable component of remanence with the extremely high coercivities expected from their very elongate shape.  相似文献   

5.
Al- and Mg-doped titanomagnetites were synthesized at 1300°C using the gas-mixing technique. A composition, representative of average natural titanomagnetites in ocean floor basalts, was sought.

The samples were ball-milled in acetone to average grain sizes of 0.5 μm and 5 μm and the material was then oxidised, in air, at temperatures below 300°C. This procedure formed titanomaghemite, a cation-deficient titanomagnetite.

Low-temperature oxidation is described as the diffusion of Fe-ions out of the spinel lattice and the process is observed to be distinctly dependent upon grain size.  相似文献   


6.
The nature of magnetic grains in basalts obtained from different parts of the world has been investigated. Results indicate that magnetic behaviour attributable to cation-deficient magnetite is common in basalts younger than Cretaceous, while that due to multidomain magnetite is widespread in much older rocks. Superparamagnetic grains occur in basalts more abundantly than originally presumed, which seem to be mainly responsible for the viscous remanent magnetization of such samples. Basalts which are inferred to contain predominantly optimum single-domain grains are found to be most suitable for palaeomagnetic work. However, many samples generally contain a wide range of grain sizes and this can account for the observed variation in their magnetic stability. One possible mechanism for the formation of such magnetic grains in basalts and its implications to palaeomagnetism is presented. Basalts whose magnetic behaviour is completely reversible on heating and cooling are very rare and because of this fact the reliability of palaeointensity determinations, involving heating of the samples even for one time, may be reduced to a considerable extent.  相似文献   

7.
Electron microprobe and reflected light microscopic examinations confirm the presence of composite grains of ferrian ilmenite with Xilm = 0.53 and titanomagnetite with Xusp = 0.13 in a dacite with self-reversed TRM. A parallel TRM component associated with titanomagnetite and a reversed component associated with self-reversing ferrian ilmenite are the principal NRM components. A subordinate, parallel component is associated with ferrian ilmenite which is not magnetically coupled to an “χ-phase”. The natural self-reversing properties are mainly a consequence of the dacite's high quenching temperature, calculated at 862–864°C using the Fe—Ti oxide geothermometer, and are most consistent with the self-reversal mechanism proposed by Lawson et al. [9].The conduction of thermal demagnetization and TRM induction tests in air had a much greater effect on the Fe—Ti oxides than did natural cooling, and resulted in significant oxidation with the consequent modification of some magnetic properties and the formation of another reversed TRM component. The subdivision of titanomagnetite grains by oxidation along fractures decreased its effective grain size and caused an apparent increase in its magnetic intensity, in addition to a slight increase in its resistance to alternating field demagnetization. The χ-phase associated with the reversed NRM component, with 0.42 > Xilm 0.31, became Fe-enriched during the earlier stages of heat treatment. It is suggested that after heating at 600°C for two hours or more, this χ-phase exsolves as titanohematite with Xilm < 0.33. The ferrian ilmenite host is consequently enriched in Ti, and another χ-phase much closer in composition to the host generates a reversed TRM component with Tb < 200°C.  相似文献   

8.
Stable paleomagnetic directions in four basaltic dykes and in some associated Caledonian metamorphic rocks define high-latitude, Mesozoic paleomagnetic pole positions which are not compatible with the K---Ar age of 250 My determined for the dykes. A monotonic increase of 40% occurs in the potassium content of samples taken across a dyke 32 cm wide. This is accompanied by only a 1–2% variation in the K---Ar age of the samples, suggesting the absence of any significant level of initial argon. Titanomagnetite grains having bulk compositions around x = 0.6 have suffered extensive low-temperature alteration, forming assemblages of ferri-rutile granules in a matrix of pure magnetite. The complete remagnetisation of both the dykes and the associated country rocks is probably an expression of a VRM acquired at elevated temperatures (150–500°C) at the emplacement depth of the dykes. A stable remanent magnetisation was locked-in during uplift of the area, probably related to the Kimmerian basin development in the adjacent North Sea and the epeirogenic uplift of western Fennoscandia.  相似文献   

9.
Summary Magnetic hysteresis studies at different fields and temperatures have been carried out on several basalts. From such studies it would be often possible to delineate the single or multidomain character of the sample and in some cases to identify the magnetic minerals in them. However, in determining the Curie temperatures of the basalts, especially of those containing predominantly single domain grains, several difficulties arise, which are discussed.  相似文献   

10.
An estimation of the domain state of 15 natural and synthetic samples containing both homogeneous and multiphase oxidized titanomagnetites was made by means of Jrs/Js and Hcr/Hc ratios, the Lowrie-Fuller criterion, the thermomagnetic criterion, F criterion and the Preisach diagram. The Jrs/Js and Hcr/Hc ratios and the Lowrie-Fuller criterion are shown to be not sufficiently informative for a determination of the domain state. In the case where the lamellae thickness became thinner than 0.1 μm, titanomagnetite grains demonstrate multidomain behaviour independent of the size of the interlamellar regions (cells). If the lamellae become thicker than 0.1 μm the domain state depends on the size of the cells. Single-domain behaviour is obtained for a cell size less than 1 × 1 μm; in agreement with the results of others, larger cells have multidomain properties.  相似文献   

11.
The ground state of the core-mantle conductivity system is defined as a step function transition from the constant non-zero conductivity of the core to zero conductivity in the mantle. This ground state is reached by letting the thickness of a transition region Δ → 0, where Δ appears as a parameter in the model conductivity of the system. By a transformation of the equation governing the behavior of the electrostatic potential φ, it is shown that the function V(x) = (1/σ1/2)(d2σ1/2/dx2) acts as a potential barrier in the quantum mechanical sense, and that for certain conductivity profiles σ(x), where x is the usual Cartesian coordinate, the electrostatic potential is screened out in regions where σ(x) → 0 as Δ → 0. Consequently, E = −φ also vanishes in these regions. The results generalize to the time-dependent case. Conditions that the conductivity function σ(x) must satisfy to qualify as the ground-state conductivity are defined and an example is provided.  相似文献   

12.
Welded tuffs in the Bogopol and Sijanov groups were sampled at 27 sites from 12 caldera formations in the Sikhote Alin mountain range around Kavalerovo (44.3°N, 135.0°E) for chronological and paleomagnetic studies. KAr age dates show that the welded tuffs erupted between 66 Ma and 46 Ma. All sites yield reliable paleomagnetic directions, with unblocking temperatures higher than 560°C. The high-temperature component at 12 sites and the medium-temperature component at 3 sites in the Bogopol Group show reversed polarity (D = 193.7°, I = −57.6°,95 = 8.1°). The high-temperature component at 11 sites in the Sijanov Group showed both reversed and normal polarities and its mean direction reveals no detectable deflection from north (D = −2.9°, I = 59.6°,95 = 11.2°). The combined paleomagnetic direction of the two groups yields a paleomagnetic pole of 250.5°E, 84.1°N (A95 = 8.8°), which falls near Cretaceous paleomagnetic poles from Outer Mongolia, Inner Mongolia, the North China Block and the South China Block. The Sikhote Alin area appears not to have been subjected to detectable motion with respect to East Asia since about 50 Ma. This implies that the Sikhote Alin area behaved as an integral part of East Asia during the opening of the Japan Sea at about 15 Ma. However, significant separation between the paleomagnetic poles of East Asia and Europe during the Jurassic-Paleogene implies a major relative movement between these two blocks since the Paleogene.  相似文献   

13.
We report opaque mineralogical observations and magnetic properties of primary titanomagnetites in Tertiary submarine gabbros from DSDP, Legs 30 and 37 and in a late Archean, continental granitic pluton, the Shelley Lake granite. The titanomagnetites and silicates in all the submarine gabbros have been deuterically oxidized. There is no indication of subsequent low-temperature oxidation, although serpentization of olivines is pervasive in the deeper Leg 37 units. The Leg 30 samples, from a single thick sill, contain abundant coarse (≈100 μm) titanomagnetites with fully developed ilmenite exsolution lamellae. Curie temperatures are 515–550°C; there are no low Curie temperatures that would indicate surviving unoxidized titanomagnetite. The unserpentinized Leg 37 gabbros contain scarce opaques with pure magnetite Curie points that are barely resolvable microscopically; most occur as inclusions in pyroxene. In the Shelley Lake granite, on the other hand, many samples exhibit bimodal blocking-temperature spectra, with blocking temperature peaks at 250–300°C and 550–575°C. The low-blocking-temperature phase is unidentified. No pyrrhotite was seen in thin section. Optically homogeneous grains coexist with fully exsolved neighbours, but the electron microprobe indicates no titanium. The lamellae appear to be haematite, not ilmenite, and the primary composition of the opaques is pure magnetite. The oxidation state of the opaques is very inhomogeneous, even on a fine scale.  相似文献   

14.
Harrat Al-Birk volcanics are products of the Red Sea rift in southwest Saudi Arabia that started in the Tertiary and reached its climax at ~ 5 Ma.This volcanic field is almost monotonous and is dominated by basalts that include mafic-ultramafic mantle xenoliths(gabbro,websterite,and garnet-clinopyroxenite).The present work presents the first detailed petrographic and geochemical notes about the basalts.They comprise vesicular basalt,porphyritic basalt,and flow-textured basalt,in addition to red and black scoria.Geochemically,the volcanic rock varieties of the Harrat Al-Birk are low- to medium-Ti,sodic-alkaline olivine basalts with an enriched oceanic island signature but extruded in a within-plate environment.There is evidence of formation by partial melting with a sort of crystal fractionation dominated by clinopyroxene and Fe-Ti oxides.The latter have abundant titanomagnetite and lesser ilmenite.There is a remarkable enrichment of light rare earth elements and depletion in Ba,Th and K,Ta,and Ti.The geochemical data in this work suggest Harrat Al-Birk basalts represent products of watersaturated melt that was silica undersaturated.This melt was brought to the surface through partial melting of asthenospheric upper mantle that produced enriched oceanic island basalts.Such partial melting is the result of subducted continental mantle lithosphere with considerable mantle metasomatism of subducted oceanic lithosphere that might contain hydrous phases in its peridotites.The fractional crystallization process was controlled by significant separation of clinopyroxene followed by amphiboles and Fe-Ti oxides,particularly ilmenite.Accordingly,the Harrat Al-Birk alkali basalts underwent crystal fractionation that is completely absent in the exotic mantle xenoliths(e.g.Nemeth et al.in The Pleistocene Jabal Akwa A1 Yamaniah maar/tuff ring-scoria cone complex as an analogy for future phreatomagmatic to magmatic explosive eruption scenarios in the Jizan Region,SW Saudi Arabia 2014).  相似文献   

15.
Melting relations of β-quartz were experimentally determined at 1.0 GPa (1900±20 °C), 1.5 GPa (2033±20 °C), and 2.0 GPa (2145±20 °C) using a new high-pressure assembly in a piston–cylinder apparatus and substantial differences were found with data previously reported. The new melting data of β-quartz were combined and optimized with all available thermodynamic, volumetric, and phase equilibria data for β-cristobalite, β-quartz and coesite to produce a PT liquidus diagram for silica valid up to 6.0 GPa. Using the new optimized thermodynamic parameters, the invariant point β-cristobalite+β-quartz+liquid and β-quartz+coesite+liquid were determined to lie at 1687±17 °C and 0.457 GPa, and 2425±25 °C and 5.00 GPa, respectively.  相似文献   

16.
The rock magnetic properties of the samples of dredged rocks composing the submarine volcanic edifices within the Sea-of-Okhotsk slope of the northern part of the Kuril Island Arc are studied. The measurements of the standard rock magnetic parameters, thermomagnetic analysis, petrographical studies, and microprobe investigations have been carried out. The magnetization of the studied rocks is mainly carried by the pseudo-single domain and multidomain titanomagnetite and low-Ti titanomagnetite grains. The high values of the natural remanent magnetization are due to the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility are associated with the high concentration of ferrimagnetic grains. The highest Curie points are observed in the titanomagnetite grains of the igneous rocks composing the edifices of the Smirnov, Edelshtein, and 1.4 submarine volcanoes.  相似文献   

17.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   

18.
This study develops an empirical crystal-chemical framework for systematizing the kinetics of Pb loss and fission-track annealing in U-bearing minerals. Ionic porosity, Z (the fraction of a mineral's unit-cell volume not occupied by ions) potentially accounts for kinetic behavior by monitoring mean metal-oxygen bond length/strength. Various tests of a general kinetics-porosity relationship are presented, based upon diverse mineral data including: (1) Pb diffusion parameters; (2) measured closure temperatures (TC) for fission-track annealing and (3) retentivities of both Pb and fission tracks, from apparent-age data. Every kinetic parameter (including TC and mineral age for both the U/Pb and fission-track systems) is inversely correlated with Z within the sub-assemblage: zircon (Z ≈ 29%), titanite ( 34%) and apatite ( 38%). Assuming a diffusional closure model, Pb isotopic transport phenomena are described by a TC-Z scale “calibrated” with field-based TC data for titanite (≥ 680 ± 20°C) and apatite ( 500°C). Extrapolation of this scale yields TC estimates for the following minerals: staurolite (TC ≥ 1060°C, Z ≈ 25%); garnet (≥ 1010°C, 26.5%); zircon (≥900°C); monazite, xenotime, and epidote (≥ 750°C, 32%); and Ca-clinopyroxene (≥ 670 ± 30°C, 34 ± 1%, depending on composition). These empirical results imply that a (U/)Pb/Pb date for staurolite or garnet records the time of mineral growth, not post-growth isotopic closure, as also concluded in recent field studies. Because Z systematizes fission-track annealing, this recrystallization process, like volume-diffusion, must also be rate-limited by the strength of chemical bonds. The extent to which other recrystallization processes are likewise rate-limited is important to U/Pb geochronology because they potentially compete with diffusion as mechanisms for Pb-isotopic resetting in nature.  相似文献   

19.
Hysteresis loops to 1200 oersteds (9.55×104 A m?1) are measured between 295 K and 105 K for two deep-sea basalts (DSDP, Leg 34 and 37) containing large (~200 μm) unexsolved titanomagnetite grains. The Curie points, electron microprobe analyses and saturation magnetizations of the magnetic grains are the same as for unoxidized synthetic titanomagnetite (xFe2TiO4·(l ? x)Fe3O4) with x=0.6.As temperature is lowered from 295 to 190 K, coercive force Hc slowly rises from ~40 Oe to ~95 Oe approximately in proportion to the rise in the magnetostriction constant λ. Presumably, Hc is controlled by λ through internal stresses impeding domain wall motion. As expected of multidomain grains, the ratio of saturation remanence to saturation magnetization (in 1200 oersted cycles) jR/jS rises approximately in proportion to Hc, with a constant of proportionality consistent with titanomagnetite (x=0.6).As temperature is lowered from 190 to 120 K, Hc rises rapidly to ~400 Oe as a roughly linear function of the magnetocrystalline anisotropy constant K1. Perhaps Hc is now controlled by K1 through non-magnetic inclusions impeding domain wall motion.As temperature is lowered from 120 to 105 K, Hc rises even more rapidly to ~600 Oe. The control over Hc seems to have changed again, though most of the titanomagnetite is in grains large enough to still contain a few domains. The ratio jR/jS reaches 0.7 by 105 K and appears to be saturating towards the theoretical limit of 0.83.  相似文献   

20.
Ion microprobe measurements of Pb isotope ratios in monazites have been obtained, in situ, from thin sections using the Cambridge ISOLAB 120. Molecular interferences are sufficiently resolved at an RP of 6500 to allow 207Pb/206Pb dating of monazite with precisions as low as 4–5 Ma (2σ). The results presented here provide important information on the chronological history of the Late Archean metamorphism of the Wind River Range, Wyoming (USA).

Matrix monazites and monazite inclusions in garnets from a metapelite from the northern Wind River Range have been analysed by SIMS. In a previous study peak metamorphic conditions (T = 800°C; P = 8 ± 1 kb*) were estimated using inclusion assemblages in garnets from this same sample. Isolated monazite inclusions in garnet yield 207Pb/206Pb age estimates of 2781 ± 6 to 2809 ± 10 Ma. Those along fractures yield lower ages (2603–2687 Ma) which are similar to TIMS and SIMS ages of matrix monazites. A single large (500 μm) monazite grain locally preserves growth zoning, but has a recrystallised core and a resorbed (recrystallised?) rim. Age estimates for these three regions are 2788 ± 9 Ma, 2663 ± 4 and 2523 ± 6 Ma, respectively. Thus the inclusion assemblages of Sharp and Essene* may record peak metamorphic conditions at ca. 2.8 Ga, and indicate a phase of metamorphism that predates by over 100 Ma the emplacement of the Bridger Batholith, the major lithologic component of the northern Wind River Range.

The analysed monazite grains appear to preserve ca. 300 Ma history, even within a single grain. Monazite inclusions in garnet that are fully armoured may provide estimates for the time of garnet growth, even in high grade terranes where most chronometers are reset. The age pattern preserved by the large monazite grain cannot be simply related to diffusion controlled closure. Instead, a chronology is preserved which can be related to the petrographic setting of indicidual grains through in situ analysis.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号