首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Quaternary volcanic rocks from Gögova region constitute an example of on intra-continental volcanism in Southern Anatolia, Turkey. These rocks were erupted along the left-lateral strike-slip Yumurtalιk fault zone. They comprise basaltic lavas containing mafic enclaves. The enclaves are distributed widely through the lavas and are spherical to ellipsoidal in shape. Both the host lavas and the mafic enclaves have an alkaline character. Fractional crystallization process was important in the formation of the mafic enclaves where olivine was the main crystallizing phase. However, fractional crystallization was not a dominant process in the host lavas. Geochemical and petrological characteristics of both the mafic enclaves and the host lavas imply that magma mingling occurred during or immediately before eruption.  相似文献   

2.
Three genetically unrelated magma suites are found in the extrusivesequences of the Troodos ophiolite, Cyprus. A stratigraphicallylower pillow lava suite contains andesite and dacite glassesand shows the crystallization order plagioclase; augite, orthopyroxene;titanomagnetite (with the pyroxenes appearing almost simultaneously).These lavas can in part be correlated chemically and mineralogicallywith the sheeted dikes and the upper part of the gabbro complexof the ophiolite. The second magma suite is represented in astratigraphically upper extrusive suite and contains basalticandesite and andesite glasses with the crystallizaton orderchromite; olivine; Ca-rich pyroxene; plagioclase. This magmasuite can be correlated chemically and mineralogically withparts of the ophiolitic ultramafic and mafic cumulate sequence,which has the crystallization order olivine; Ca-rich pyroxene;orthopyroxene; plagioclase. The third magma suite is representedby basaltic andesite lavas along the Arakapas fault zone andshows a boninitic crystallization order olivine; orthopyroxene;Ca-rich pyroxene; plagioclase. One-atmosphere, anhydrous phaseequilibria experiments on a lava from the second suite indicateplagioclase crystallization from 1225?C, pigeonite from 1200?C,and augite from 1165?C. These experimental data contrast withthe crystallization order suggested by the lavas and the associatedcumulates. The observed crystallization orders and the presenceof magmatic water in the fresh glasses of all suites are consistentwith evolution under relatively high partial water pressures.In particular, high PH2O (1–3 kb) can explain the lateappearances of plagioclase and Ca-poor pyroxene in the majorityof the basaltic andesite lavas as the effects of suppressedcrystallization temperatures and shifting of cotectic relations.The detailed crystallization orders are probably controlledby relatively minor differences in the normative compositionsof the parental magmas. The basaltic andesite lavas are likelyto reach augite saturation before Ca-poor pyroxene saturation,whereas the Arakapas fault zone lavas, which have relativelyless normative diopside and more quartz, reached the Ca-poorpyroxene-olivine reaction surface and crystallized Ca-poor pyroxeneafter olivine.  相似文献   

3.
REE abundances for a suite of Rabaul caldera lavas ranging from basalt to dacite are reported. Three of the lavas contain negative Ce anomalies. These ‘anomalous’ lavas are older and have a geochemistry different from the younger lavas which form the main Rabaul caldera. The consistent geochemical differences between the two groups of lavas suggest that the Ce anomaly is inherited from the source material from which the magmas were derived and is not due to differences in crystallization or fractionation paths. Ocean floor lavas containing zeolite assemblages have been shown to possess a Ce anomaly and it is concluded that those lavas having a Ce anomaly were derived from lithosphere which had been depleted in Ce during weathering and hydrothermal processes.  相似文献   

4.
Holocene lavas from Craters of the Moon (COM) National Monument are representative of differentiated lavas which occur around the margins of the Snake River Plains (SRP) and they range serially in composition from alkali- and phosphorous-rich ferrobasalts to ferrolatites. Petrographic study indicates that these lavas evolved primarily by cotectic crystallization of olivine, plagioclase, magnetite and apatite in the mafic members of the suite (ferrobasalts), and by cotectic crystallization of plagioclase, magnetite, clinopyroxene and minor olivine in the salic members. Quantitative phase relations in the COM lavas, calculated by means of a leastsquares mixing program, indicate that the observed range in composition among these lavas corresponds to at least 70 percent crystallization of a magma similar to the most mafic COM lavas. Anhydrous one-atmosphere experimental crystallization studies fail to reproduce exactly the inferred phase relations; the discrepancy is attributed to the presence of water in the naturally crystallized magmas. The origin of COM parental magma cannot be unequivocably resolved. Available evidence suggests that COM lavas do not represent melts derived directly from the mantle: (1) high Sr87/Sr86 ratios (0.708 to 0.712), (2) relatively high Fe/(Fe+Mg) and excluded-element content in even the most mafic COM lavas, (3) occurrence of megacrysts of inferred high-pressure origin in the Lava Creek flow. Megacrysts occur in the Lava Creek flow as clusters of labradorite, aluminous clinopyroxene, and olivine. Analogy with the experiments of Thompson [1] and least squares mixing calculations indicate that intermediate (ca. 8 to 10 Kbar) pressure fractionation of such megacrysts from olivine tholeiite magma may yield derivative COM-type liquids.  相似文献   

5.
Isotopic studies of rocks from oceanic island arcs such as the Marianas indicate that little, if any, recycling of continental material (e.g. oceanic sediments) occurs in these arcs. Because oceanic arcs are on the average more mafic than the dominantly andesitic continental arcs, an important question is whether the andesites of continental arcs are produced by a fundamentally different (more complex?) mechanism than the lavas of oceanic arcs. An excellent opportunity for study of this question is provided by the island of Sarigan, in the Mariana active arc, on which calc-alkaline andesites (including hornblende-bearing types) are exposed along with more mafic lavas. Available isotope data suggest the Sarigan lavas (including the andesites) were derived from mantle material with little or no involvement of continental components. Ratios of incompatible elements suggest that most of the Sarigan lavas were derived from similar source materials. Absolute abundances of incompatible elements vary irregularly within the eruptive sequence and indicate at least 5 distinct magma batches are represented on Sarigan. Major element data obtained on the lavas and mineral phases in them, combined with modal mineral abundances, suggest that the calc-alkaline nature of the volcanic rocks on Sarigan results from the fractional crystallization of titanomagnetite in combination with other anhydrous phases. Amphibole, although present in some samples, is mainly a late-crystallizing phase and did not produce the calc-alkline characteristics of these lavas. Gabbroic samples found in the volcanic sequence have mineralogc and geochemical characteristics that would be expected of residual solids produced during fractional crystallization of the Sarigan lavas. When combined, data on the lavas and the gabbros suggest the following crystallization sequence: olivine — plagioclase — clinopyroxene — titanomagnetite — orthopyroxene±hornblende, biotite and accessory phases. These results lead to the conclusion that calc-alkaline magmas can be generated directly from mantle sources.  相似文献   

6.
华南新元古代中期(746-827Ma)双峰式(玄武岩-流纹岩)火山岩喷发于大陆板内裂谷环境。它们极有可能与导致Rodinia超大陆裂谷化-裂解的地幔柱(或超级地幔柱)活动有关。根据岩石地球化学数据,华南新元古代中期裂谷基性熔岩可以划分为高Ti/Y(HT,Ti/Y〉500)和低Ti/Y(LT,Ti/Y〈500)两个岩浆类型。HT熔岩又可进一步划分为HT1和HT2等两个亚类。HT1熔岩主要分部于华南中-西部裂谷盆地之中,总体上属于碱性玄武质岩浆系列;HT2和LT熔岩主要分布于华南中-东部裂谷盆地之中,总体上属于拉斑玄武质岩浆系列。元素和同位素数据表明,华南新元古代中期裂谷基性熔岩的化学变化不是由一个共同的母岩浆结晶分异作用所产生。华南中-西部地区裂谷基性熔岩的母岩浆经受了辉长岩质结晶分离作用,而华南中-东部地区裂谷基性熔岩的化学演化则是受控于单斜辉石(cpx)士橄榄石(01)结晶分离作用。各个双峰式火山岩系中,基性和酸性熔岩间为分异结晶关系。华南新元古代中期裂谷火山岩系极有可能是源于共同的地幔柱,该地幔柱组分的成分为:eNd(f)≈+6,Mg#≈0.7,La/Nb≈0.7。华南新元古代中期裂谷基性熔岩存在空间上的地球化学变化:华南中一西部HT1熔岩的母岩浆,没有受到明显的大陆岩石圈混染,保存了鲜明的地幔柱信号;而大陆地壳或大陆岩石圈混染作用对于华南中-东部LT和HT2熔岩的形成则有着重要贡献。研究揭示,华南新元古代中期裂谷基性熔岩的母岩浆总体上产生于上涌地幔柱较深层位的石榴子石稳定区(深度:100~130km)。中-西部裂谷基性熔岩的母岩浆(碱性玄武质)产生于深度较大(~130km)、部分熔融程度较低(〈10%)的条件下,中-东部裂谷基性熔岩的母岩浆(拉斑玄武质)产生于深度稍浅(~100km)?  相似文献   

7.
The major element chemistry of SiO2-undersaturated arc lavas from Lihir Island, Papua New Guinea, and 1 atmosphere experiments on an alkali basalt from this island show complex polybaric fractionation affected this suite of lavas. Low Ni and MgO are typical of these arc lavas and result from olivine fractionation, probably at high pressure. Fractionation at low pressure (<5 kb) produces two evolutionary trends. Separation of clinopyroxene, plagioclase and minor olivine from the primitive lavas results in increasing normative nepheline contents and major element trends similar to those of the experiments. In contrast, addition of magnetite and amphibole to the fractionating assemblage in the evolved lavas results in decreasing normative nepheline and major element trends which are markedly different from those of the experiments. The composition of experimental glasses and 1 atmosphere liquid lines of descent, derived from anhydrous melting experiments run at the fayalite-magnetite-quartz (FMQ) buffer and at higher oxygen fugacities, are displaced from the lavas on oxide-oxide plots. HighfO2 produces high Fe3+/Fe2+ and the early crystallization of abundant magnetite, and high H2O contents are responsible for crystallization of amphibole. Crystal fractionation of these phases and the high Fe3+/Fe2+ are responsible for the displacement of the lavas and experimental glasses in mineral projection schemes from the 1 atmosphere olivine-clinopyroxene-plagioclase saturation boundary of Sack et al. (1987).  相似文献   

8.
The salic phases found in leucite-basanites, -trachytes, and -phonolites may be used to portray crystallization in the system NaAlSiO4-KAlSiO4-CaAl2Si2O8-SiO2, the phonolite pentahedron. Only two lavas have been found that contain the assemblage leucite-nepheline-plagioclase-sanidine and liquid, a natural pseudo-invariant assemblage (at 900° C±100) equivalent to the isobaric invariant point of the four component system. The diversity of phases in this group of lavas illustrates the role of halogens in controlling their crystallization paths. Thus the presence of F in the leucite-basanites has stabilized magnesian biotite and suppressed sanidine, as has been found in other basanitic lavas (Brown and Carmichael 1969). The presence of Cl in these same lavas has induced the crystallization of sodalite, which takes the place of nepheline in the groundmass. However in the leucite-trachytes, biotite has suppressed olivine and coexists with sanidine and leucite. The presence of S may produce haüyne at the expense of nepheline, and in general sulphate minerals, which include apatite, have the role in lavas of low silica activity that pyrrhotite plays in liquids of high silica activity. Both pyroxenes and titaniferous magnetites in this suite of lavas are very aluminous. Groundmass crystals of pyroxene may have one-fifth of Si replaced by Al. Other phases which occur occasionally are melanite garnet and a potassium-rich hastingsite, but neither ilmenite nor a sulphide mineral has been found. Phenocryst equilibration temperatures, derived from olivine and Sr-rich plagioclase, are generally in the range from 1,050° C to 1,150° C. The high content of incompatible elements (e.g., K, Ba, Rb, F, Sr, P) in these lavas suggests that they represent a small liquid fraction from a mantle source which possibly contains phlogopite.  相似文献   

9.
Petrographic, mineral chemical and whole-rock major oxide data are presented for the lavas of the Main Volcanic Series of Patmos, Dodecanesos, Greece. These lavas were erupted about 7 m.y. ago and range in composition from ne-trachybasalts through hy-trachybasalts and trachyandesites to Q-trachytes. To some extent, the ne-trachybasalts are intermediate in composition to the alkaline lavas found on oceanic islands and the calc-alkaline lavas of destructive plate margins. Major oxide variation is largely explicable in terms of fractional crystallization involving removal of the observed phenocryst and microphenocryst phases viz. olivine, plagioclase, clinopyroxene and Ti-magnetite in the mafic lavas, plagioclase, clinopyroxene, mica and Ti-magnetite in the evolved lavas. Apatite, which occurs as an inclusion in other phenocrysts or as microphenocrysts must also have been removed. However, mass balance calculations indicate that the chemistry of the hy-trachybasalts is inconsistent with an origin via fractional crystallization alone and the complex zoning patterns and resorbtion phenomena shown by phenocrysts in these lavas show that they are hybrids formed by the mixing of 80-77% ne-trachybasalt with 20–23% trachyandesite. It is estimated that the mixing event preceded eruption by a period of 12 h-2 weeks suggesting that mixing triggered eruption. Combined fractionation and mixing cannot explain the relatively low MgO contents of the hy-trachybasalts and it is concluded that assimilation also occurred. Assimilation, and especially addition of volatiles to the magmas, may be responsible for the evolutionary trend from ne-normative to hy-normative magmas and was probably facilitated by intensified convection resulting from mixing. A model is presented whereby primitive magma undergoes fractionation in an intracrustal magma chamber to yield more evolved liquids. Influx of hot primitive magma into the base of the chamber facilitates assimilation, but eventually mixing yields the hy-trachybasalts and finally the ne-trachybasalts are erupted.  相似文献   

10.
Geochemistry of the Hawi lavas,Kohala Volcano,Hawaii   总被引:1,自引:0,他引:1  
Hawi lavas form the late stage alkalic cap on Kohala Volcano and range in composition from hawaiite to trachyte. New, detailed field mapping of Kohala and reinterpretation of previously published age data suggest that there was no significant eruption hiatus between the Hawi and underlying Pololu shield lavas as was previously suggested. Mineral and whole-rock chemical data are consistent with a crystal fractionation origin for the hawaiite to trachyte compositional variation observed within the Hawi lavas. Plagioclase, clinopyroxene, Ti-magnetite, olivine and apatite fractionation are needed to explain this variation. The clinopyroxene fractionation may have occurred at moderate pressure because it is virtually absent in these lavas and is not a near liquidus phase at pressures of less than 8 Kb. Plagioclase would be buoyant in the Hawi hawaiite magmas so a mechanism like dynamic flow crystallization is needed for its fractionation and to account for the virtual absence of phenocrysts in the lavas. Hawi lavas are distinct in Sr and Nd isotopic ratios and/or incompatible element ratios from the Pololu lavas. Thus they were derived from compositionally distinct sources. Compared to other suites of Hawaiian alkalic cap lavas, Hawi lavas have anomalously high concentrations of phosphorus and rare earth elements. These differences could be due to greater apatite content in the source for the Hawi lavas.  相似文献   

11.
Clinopyroxene megacrysts from young melanephelinitic lavas were divided into Cr-rich and Cr-poor suites. Sr, Nd, and Pb isotopic ratios of leached megacrysts and host lava are indistinguishable from each other and indicate a depleted source. Host lavas do not display chemical evidence for significant fractional crystallization, which is required to explain the compositional range of the megacrysts. This rules out a simple cognate genetic relationship between the two, and strictly defines megacrysts as xenocrysts. The well-defined correlations of trace elements with the Mg-numbers in the megacrysts are interpreted as the result of extensive fractional/equilibrium crystallization of magma over a large temperature range at near isobaric condition in the upper mantle. Trace element variations in megacrysts are consistent with fractional crystallization of clinopyroxene alone for the Cr-rich suite, and clinopyroxene + garnet for the Cr-poor suite from at least two bathes of related melts. Megacrysts parent magma might represent mantle melts, which were never erupted in their initial composition.  相似文献   

12.
The phenocryst cores of the basaltic lavas from Jan Mayen and Hawaii display a range in compositions. The textural features of the phenocrysts also vary, both euhedral and skeletal phenocrysts are present in the same thin section. Apparently the basaltic magmas underwent crystallization within a temperature interval of 50–200° C before they became fractionated. The fractionates of basaltic lavas are therefore average compositions of the phenocryst assemblages rather than liquidus compositions. This type of fractionation is called delayed fractionation. It is considered that most tholeiitic and alkalic basaltic lavas undergo delayed fractionation.  相似文献   

13.
Major elements of 2202 basalts from the East Pacific Rise (EPR) and 888 basalts from near-EPR seamounts are used to investigate their differences in magma crystallization pressures and mantle melting conditions. Crystallization pressure calculation from basalts with 5.0wt%相似文献   

14.
The major and trace element chemistry of phonolites containing spinel Iherzolite xenoliths from Bokkos (Nigeria), Phonolite Hill (northeastern Australia) and Heldburg (East Germany) is consistent with an origin by fractional crystallization of basanitic magmas at upper mantle pressures (10–15 kbar). At Bokkos, spatially associated lavas ranging from hawaiitic nepheline mugearite to nepheline benmoreite can be modeled very well by fractional crystallization of kaersutitic amphibole + olivine + Fe-Ti-spinel + apatite, a crystal extract consistent with experimentally-determined near-liquidus phase relationships for mugearitic liquids. Further fractional crystallization of aluminous clinopyroxene + mica + apatite will yield the phonolites. A similar model relating the unusual Iherzolite-bearing mafic nepheline benmoreite from Pigroot (New Zealand) to basanitic lavas of the East Otago province is not supported by major and trace element data. The Pigroot lava is possibly the product of melting of a mantle source region previously enriched in Sr and light rare earth elements, with subsequent minor fractional crystallization of olivine + kaersutite. Dynamic flow crystallization processes operating within conduit systems from mantle pressures are capable of yielding large volumes of evolved phonolitic liquids from primary basanitic liquids, if magma flow rates are appropriate. This mechanism may provide an explanation for the volumetric bias towards salic differentiates in some alkalic provinces.  相似文献   

15.
We present new 40Ar-39 Ar plagioclase crystallization ages from the dykes exposed at the northern slope of the Satpura Mountain range near Betul-Jabalpur-Pachmarhi area,~800 km NE of the Western Ghats escarpment.Among the two plateau ages,the first age of 66.56±0.42 Ma from a dyke near Mohpani village represents its crystallization age which is either slightly older or contemporaneous with the nearby Mandla lava flows(63-65 Ma).We suggest that the Mohpani dyke might be one of the feeders for the surrounding lava flows as these lavas are significantly younger than the majority of the main Deccan lavas of the Western Ghats(66.38-65.54 Ma).The second age of 56.95±1.08 Ma comes from a younger dyke near Olini village which cuts across the lava flows of the area.The age correlates well with the Mandla lavas which are chemically similar to the uppermost Poladpur,Ambenali and Mahabaleshwar Formation lavas of SW Deccan.Our study shows that the dyke activities occurred in two phases,with the second one representing the terminal stage.  相似文献   

16.
A major question concerning the Bushveld Complex is the relationship between the layered mafic rocks and the overlying Rooiberg Group felsites and related granophyres. Here, we assemble bulk-rock analyses to gain insight into this question and investigate the petrogenesis of the felsic rocks. The data indicate that the Rooiberg Group consists of distinctive magnesian and ferroan lavas. The former dominates the basalts to rhyolites of the basal Dullstroom Formation, while nearly all the dacites to rhyolites of the overlying Damwal, Kwaggasnek, and Schrikkloof Formations are ferroan. The ferroan rocks also include the Stavoren Granophyre, which exists regionally as a several-hundred-meter-thick concordant sheet between the Bushveld Complex and Rooiberg lavas. The compositions of the magnesian lavas are similar to calc-alkaline granitoids found in convergent margins, suggesting that the lavas could have originated in a mantle affected by previous Archean subduction events that are recorded by xenoliths and inclusions in diamonds from most Kaapvaal kimberlites. In contrast, the compositions of the ferroan lavas indicate formation by fractional crystallization of basaltic liquids and are essentially identical to ferroan rhyolites associated with mafic rocks from other settings. The hypothesis that these rocks are fractional crystallization products of Bushveld mafic liquids is consistent with published radiogenic and stable isotope data and known age relations. Based on compositional characteristics and geologic relations, the Stavoren Granophyre is the most likely candidate for the residual liquid that escaped from the top of the Bushveld Complex. Whether the bulk of the Bushveld Province ferroan rhyolites formed in the chamber of the extant layered mafic sequence or in a deeper, hidden crustal magma reservoir remains unclear.  相似文献   

17.
Glass Mountain, California, consists of >50 km3 of high-silica rhyolite lavas and associated pyroclastic deposits that erupted over a period of >1 my preceding explosive eruption of the Bishop Tuff and formation of the Long Valley caldera at 0.73 Ma. These “minimum-melt” rhyolites yield Fe-Ti-oxide temperatures of 695–718°C and contain sparse phenocrysts of plagioclase+quartz+magnetite+apatite±sanidine, biotite, ilmenite, allanite, and zircon. Incompatible trace elements show similar or larger ranges within the Glass Mountain suite than within the Bishop Tuff, despite a much smaller range of major-element concentrations, largely due to variability among the older lavas (erupted between 2.1 and 1.2 Ma). Ratios of the most incompatible elements have larger ranges in the older lavas than in the younger lavas (1.2–0.79 Ma), and concentrations of incompatible elements span wide ranges at nearly constant Ce/Yb, suggesting that the highest concentrations of these elements are not the result of extensive fractional crystallization alone; rather, they are inherited from parental magmas with a larger proportion of crustal partial melt. Evidence for the nature of this crustal component comes from the presence of scarce, tiny xenocrysts derived from granitic and greenschist-grade metamorphic rocks. The wider range of chemical and isotopic compositions in the older lavas, the larger range in phenocryst modes, the eruption of magmas with different compositions at nearly the same time in different parts of the field, and the smaller volume of individual lavas suggest either that more than one magma body was tapped during eruption of the older lavas or that a single chamber tapped by all lavas was small enough that the composition of its upper reaches easily affected by new additions of crustal melts. We interpret the relative chemical, mineralogical, and isotopic homogeneity of the younger Glass Mountain lavas as reflecting eruptions from a large, integrated magma chamber. The small number of cruptions between 1.4 and 1.2 ma may have allowed time for a large magma body to coalesce, and, as the chamber grew, its upper reaches became less affected by new inputs of crustal melts, so that trace-element trends in magmas erupted after 1.2 Ma are largely controlled by fractional crystallization. The extremely low Sr concentrations of Glass Mountain lavas imply extensive crystallization in chambers at least hundreds of cubic kilometers in volume. The close similarity in Sr, Nd, and Pb isotopic ratios between the younger Glass Mountain lavas and unaltered Bishop Tuff indicates that they tapped the same body of magma, which had become isotopically homogenous by 1.2 Ma but continued to differentiate after that time. From 1.2 to 0.79 Ma, volumetric eruptive rates may have exceeded rates of differentiation, as younger Glass Mountain lavas become slightly less evolved with time. Early-erupted Bishop Tuff is more evolved than the youngest of the Glass Mountain lavas and is characterized by slightly different trace element ratios. This suggests that although magma had been present for 0.5 my, the composiional gradient exhibited by the Bishop Tuff had not been a long-term, steady-state condition in the Long Valley magma chamber, but developed at least in part during the 0.06-my hiatus between extrusion of the last Glass Mountain lava and the climactic eruption.  相似文献   

18.
Andesites from northeastern Kanaga Island,Aleutians   总被引:1,自引:0,他引:1  
Kanaga island is located in the central Aleutian island arc. Northeastern Kanaga is a currently active late Tertiary to Recent calc-alkaline volcanic complex. Basaltic andesite to andesite lavas record three episodes (series) of volcanic activity. Series I and Series II lavas are all andesite while Series III lavas are basaltic andesite to andesite. Four Series II andesites contain abundant quenched magmatic inclusions ranging in composition from high-MgO low-alumina basalt to low-MgO highalumina basalt. The spectrum of lava compositions is due primarily to fractional crystallization of a parental low-MgO high-alumina basalt but with variable degrees of crustal contamination and magma mixing. The earliest Series I lavas represent mixing between high-alumina basalt and silicic andesite with maximum SiO2 contents of 65–67 wt %. Later Series I and all Series II lavas are due to mixing of andesite magmas of similar composition. The maximum SiO2 content of the pre-mixed andesites magmas is estimated at 60–63 wt %. The youngest lavas (Series III) are all non-mixed and have maximum estimated SiO2 contents of 59 wt %. The earliest Series I lavas contain a significant crustal component while all later lavas do not. It is concluded that the maximum SiO2 contents of silicic magmas, the contribution of crustal material to silicic magma generation, and the role of magma mixing all decrease with time. Furthermore, silicic magmas generated by fractional crystallization at this volcanic center have a maximum SiO2 content of 63 wt %. All of these features have also been documented at the central Aleutian Cold Bay Volcanic Center (Brophy 1987). Based on data from these two centers a model of Aleutian calc-alkaline magma chamber development is proposed. The main features are: (1) a single low pressure magma chamber is continuously supplied by primitive low-alumina basalt; (2) non-primary high-alumina basalt is formed along the chamber margins by selective gravitational settling of olivine and clinopyroxene and retention of plagioclase; (3) sidewall crystallization accompanied by crustal melting produces buoyant silicic (>63 wt % SiO2) liquids that pond at the top of the chamber, and; (4) continued sidewall crystallization, now isolated from the chamber wall, produces silicic liquids with 63 wt % SiO2 that increase the thickness and lowers the overall SiO2 content of the upper silicic zone. It is suggested that the maximum SiO2 content of 63% imposed on fractionation-generated magmas is due to a rheological barrier that prohibits the extraction of more silicic liquids from a crystal-liquid mush along the chamber wall.  相似文献   

19.
The water-saturated phase relations of three Leucite Hills lavas have been determined at pressures up to 5 kb. Phlogopite is the major primary liquidus phase in orendite and wyomingite at pressures, > 1 kb, but clinopyroxene and olivine are the major primary liquidus phases in madupite at pressures up to 5 kb. Leucite is a liquidus phase in all three magmas at pressures <0.5kb. The experimental results are in reasonable agreement with the inferred crystallization sequences for the Leucite Hills lavas and have applications to the crystallization and differentiation of potassium-rich magmas within the crust.  相似文献   

20.
The results of experimental studies and examination of variations in major elements, trace elements and Sr isotopes indicate that fractionation, assimilation and magma mixing combined to produce the lavas at Medicine Lake Highland. Some characteristics of the compositional differences among the members of the calc-alkalic association (basalt-andesite-dacite-rhyolite) can be produced by fractional crystallization, and a fractionation model reproduces the major element trends. Other variations are inconsistent with a fractionation origin. Elevated incompatible element abundances (K and Rb) observed in lavas intermediate between basalt and rhyolite can be produced through assimilation of a crustal component. An accompanying increase in 87Sr/86Sr from ∼ 0.07030 in basalt to ∼0.7040 in rhyolite is also consistent with crustal assimilation. The compatible trace element contents (Ni and Sr) of intermediate lavas can not be produced by fractional crystallization, and suggest a magma-mixing origin for some lavas. Unusual phenocryst assemblages and textural criteria in these lavas provide additional evidence for magma mixing. A phase diagram constructed from the low pressure melting experiments identifies a distributary reaction point, where olivine+augite react to pigeonite. Parental basalts reach this point at low pressures and undergo iron-enrichment at constant SiO2 content. The resulting liquid line of descent is characteristic of the tholeiitic trend. Calc-alkalic differentiation trends circumvent the distributary reaction point by three processes: fractionation at elevated pH2O, assimilation and magma mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号