首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High rates of wetland loss in the Mississippi deltaic plain have been attributed to a combination of insufficient marsh sedimentation and relative sea-level rise rates of over 1.2 cm yr?1. This study examines contemporary patterns of sediment delivery to the marsh surface by evaluating the contribution of individual marsh flooding events. Strong meteorological effects on water level in Terrebonne Bay often mask the usual microtidal fluctuations in water level and cause flood events to be of unpredictable frequency and duration. Sediment deposited on the marsh surface was collected weekly at two sites. Preliminary results allow the relative contributions of tidal and storm inundations to be calculated. Maximum sedimentation is associated with strong southerly winds both causing increased flooding and mobilizing sediment from open bay areas. Sediment deposition is limited by the availability of suspended sediment and the opportunity for its transport onto the marsh surface.  相似文献   

2.
We measured the amount of arsenic, chromium, copper, lead, nickel, vanadium, and zinc accumulated over a five-year period from 1997 to 2002 in surface sediments of seven salt marshes along the New Brunswick coast of the Bay of Fundy, Canada. Study sites extended from outer to inner Bay, spanning a gradient in tidal range (6–12 m) and mean sediment deposition rate (0.27–1.76 cm yr−1). In each study site, metal concentrations were measured in low and high marsh areas. Concentrations of chromium, nickel, and zinc appear to be within their natural range, while arsenic, lead, and vanadium are enriched in some sites. Calculated sediment metal loadings rates showed variability among marsh sites that closely followed sediment deposition patterns, suggesting sediment deposition rate is the driving factor of short-term metal accumulation in Fundy marshes. The value of salt marshes as a sink for metals may be enhanced by high sedimentation rates.  相似文献   

3.
A 115-year-old railroad levee bisecting a tidal freshwater marsh perpendicular to the Patuxent River (Maryland) channel has created a northern, upstream marsh and a southern, downstream marsh. The main purpose of this study was to determine how this levee may affect the ability of the marsh system to gain elevation and to determine the levee’s impact on the marsh’s long-term sustainability to local relative sea level rise (RSLR). Previously unpublished data from 1989 to 1992 showed that suspended solids and short-term sediment deposition were greater in the south marsh compared to the north marsh; wetland surface elevation change data (1999 to 2009) showed significantly higher elevation gain in the south marsh compared to the north (6?±?2 vs. 0?±?2 mm year?1, respectively). However, marsh surface accretion (2007 to 2009) showed no significant differences between north and south marshes (23?±?8 and 26?±?7 mm year?1, respectively), and showed that shallow subsidence was an important process in both marshes. A strong seasonal effect was evident for both accretion and elevation change, with significant gains during the growing season and elevation loss during the non-growing season. Sediment transport, deposition and accretion decreased along the intertidal gradient, although no clear patterns in elevation change were recorded. Given the range in local RSLR rates in the Chesapeake Bay (2.9 to 5.8 mm year?1), only the south marsh is keeping pace with sea level at the present time. Although one would expect the north marsh to benefit from high accretion of abundant riverine sediments, these results suggest that long-term elevation gain is a more nuanced process involving more than riverine sediments. Overall, other factors such as infrequent episodic coastal events may be important in allowing the south marsh to keep pace with sea level rise. Finally, caution should be exercised when using data sets spanning only a couple of years to estimate wetland sustainability as they may not be representative of long-term cumulative effects. Two years of data do not seem to be enough to establish long-term elevation change rates at Jug Bay, but instead a decadal time frame is more appropriate.  相似文献   

4.
In the classical view of fine sediment transport and deposition in streams, particles are expected to be removed from flowing water simply by direct sedimentation onto the streambed. However, recent research has demonstrated that fine sediments can propagate into pore spaces in the streambed due to hyporheic exchange and be removed by a combination of physical and chemical processes. This behaviour can significantly alter fine sediment size distributions during in-stream sediment transport because the physical transport of fine particles and their attachment to bed sediment grains are both a function of the particle size. Herein, we present model simulations for deposition of suspended sediments with a bimodal size distribution. We also applied this approach to analyse the results of laboratory flume observations of suspended sediment deposition. Results from model simulations and flume experiments clearly show that the rate of particle deposition increases with increasing particle size. Thus, the larger particles are preferentially removed from mixtures and there is a fining of the mixed suspensions over time. Both particle deposition mechanisms, i.e. particle sedimentation and filtration, contribute to the fining of the mixed fine particle suspensions over time, and their effects are clearly demonstrated using the fundamental process-based model. These results clearly demonstrate the effects of stream-subsurface exchange on the temporal evolution of the suspended fine sediment size distribution in downstream transport.  相似文献   

5.
High rates of coastal land loss in Louisiana have prompted efforts to maintain or restore coastal wetland habitats, and structural management of marsh hydrology is one of a number of approaches that has been adopted. The aim of this study was to determine the effect of hydrologic management measures on marsh-surface sediment deposition in the Mississippi deltaic plain. Four impoundments, ranging in size from 50 ha to 177 ha and similarly sized control sites were included in the study. At each site, marsh-surface sediment traps were collected approximately biweekly for 3.5 yr to measure changes in sediment deposition. There was no significant difference in sediment deposition between any of the impoundment and control sites during the premanagement period. The results show no significant difference in marsh-surface sediment deposition between management year 1992–1993 and management year 1994–1995, but management year 1993–1994 had significantly lower sediment deposition than either the first or the last year of the study. Management year 1992–1993 showed the highest sediment deposition when it was assessed across all basins, areas, and sites, and this high rate of deposition is accounted for by the impact of Hurricane Andrew. For all management years there were significant differences between impoundment and control sites, with control sites showing higher rates of marsh surface sediment deposition than impoundments. No clear pattern was identified concerning the influence of various types of hydrologic management on rates of sediment deposition. This reduction in sediment deposition indicated that the areas under management in this study are receiving insufficient inorganic sediment deposition to keep pace with sea-level rise.  相似文献   

6.
The suspended load of the Lower Mississippi River has decreased almost 80 percent since 1850. The long-term suspended sediment record can be loosely subdivided into three phases: a historic interval prior to 1900, a predam period (1930–1952) and a postdam period (1963–1982). The suspended load decreased 43 percent from the historic to the predam period and 51 percent from the predam to the postdam period. The decreases in suspended load after 1952 coincide with the construction of reservoirs and dams on the Missouri and Arkansas rivers. Earlier decreases may be the result of changes in land use measurement practices. The decrease in suspended load and the elimination of overbank flow by the construction of artificial levees are considered to be major causes of coastal wetland loss in southeastern Louisiana. During the historic period sediment accumulation of the marsh surface was greater than the rate of water level rise. During the pre and postdam periods, the rate of water level rise exceeded sediment accretion on the marsh surface. Although the elimination of overbank sediment clearly exacerbated the wetlands loss, an accelerated rate of water level rise during the past 25 years has been a dominant factor. Based on estimates of available overbank sediment, it is suggested that the most viable management strategy for the wetlands would be the diversion of sediment into selected areas where the land loss is most critical.  相似文献   

7.
Coastal salt marshes represent an important coastal wetland system. In order to protect coastlines from erosion and rapid increase in accumulation rate, Spartina alterniflora (S. alterniflora) was introduced into the Chinese coast. Two study areas (Wanggang and Quanzhou Bay) were selected that represent the plain type and embayment type of the coastal salt marshes. In situ measurements show that the tidal current velocities are stronger on the intertidal mudflat without S. alterniflora than that with S. alterniflora, and the velocity above the canopy surface is larger than that in the salt marsh canopy. The existence of S. alterniflora also influences the velocity structure above the bare flat during ebb tide. With the decrease in current flow velocity when seawater enters into the S. alterniflora marsh, suspended sediments are largely entrapped on the marsh surface, leading to increase in sedimentation rates and change in physical evolution processes of the coastal salt marshes. The highly developed root systemof S. alterniflora induces sediment mixing and exchange between subsurface sediment strata and affects the vertical sediment distribution remarkably. The sedimentation rate of S. alterniflora marsh at the Wanggang area is much higher than the relative sea level rise rate, where rapid progradation of theWanggang saltmarshes that is protecting the coast from sea erosion is observed.  相似文献   

8.
A coastwide study of the relationship between marsh aggradation and water level changes along the rapidly deteriorating Louisiana gulf coast was conducted. Rate of vertical marsh accretion determined from137Cs dating was compared to water level changes or submergence. Results identified marsh locations that are not keeping pace with submergence. Coastwide vertical accretion rates on the order of 0.7–0.8 cm/yr are not sufficient to keep pace with water level increases occurring at rates in most locations of over 1.0 cm/yr. Submergence rates were four to five times greater than eustatic sea level change for the Gulf of Mexico. Louisiana gulf coast marshes are likely to continue deteriorating unless means are implemented for distributing Mississippi River sediment to the marsh. It is estimated that sediment equivalent to less than 10 percent of the present annual suspended load of the Mississippi would provide enough sediment for marsh accretionary processes to compensate for submergence or water level increase.  相似文献   

9.
The availability of suspended sediments will be a dominant factor influencing the stability of tidal wetlands as sea levels rise. Watershed-derived sediments are a critical source of material supporting accretion in many tidal wetlands, and recent declines in wetland extent in several large river delta systems have been attributed in part to declines in sediment delivery. Little attention has been given, however, to changes in sediment supply outside of large river deltas. In this study, significant declines in suspended sediment concentrations (SSCs) over time were observed for 25 of 61 rivers examined that drain to the East and Gulf Coasts of the USA. Declines in fluvial SSC were significantly correlated with increasing water retention behind dams, indicating that human activities play a role in declining sediment delivery. There was a regional pattern to changes in fluvial sediment, and declines in SSCs were also significantly related to rates of relative sea level rise (RSLR) along the coast, such that wetlands experiencing greater RSLR also tend to be receiving less fluvial sediment. Tidal wetlands in the Mid-Atlantic, Mississippi River Delta, and Texas Gulf especially may become increasingly vulnerable due to rapid RSLR and reductions in sediment. These results also indicate that past rates of marsh accretion may not be indicative of potential future accretion due to changes in sediment availability. Declining watershed sediment delivery to the coastal zone will limit the ability of tidal marshes to keep pace with rising sea levels in some coastal systems.  相似文献   

10.
This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export of water and its constituents (sediments, nutrients, pollutants) to or from tidal marshes has been traditionally estimated based on discharge measurements through a tidal creek. Complementary to this traditional calculation of water and sediment balances based on creek fluxes, we present novel methods to calculate water balances based on digital elevation modeling and sediment balances based on spatial modeling of surface sedimentation measurements. In contrast with spatial interpolation, the presented approach of spatial modeling accounts for the spatial scales at which sedimentation rates vary within tidal marshes. This study shows that for an old, high marsh platform, dissected by a well-developed creek network with adjoining levees and basins, flow paths are different for tidal inundation cycles with different high water levels: during shallow inundation cycles (high water level <0.2 m above the creek banks) almost all water is supplied via the creek system, while during higher inundation cycles (high water level >0.2 m) the percentage of water directly supplied via the marsh edge increases with increasing high water level. This flow pattern is in accordance with the observed decrease in sedimentation rates with increasing distance from creeks and from the marsh edge. On a young, low marsh, characterized by a gently seaward sloping topography, material exchange does not take place predominantly via creeks but the marsh is progressively flooded starting from the marsh edge. As a consequence, the spatial sedimentation pattern is most related to elevation differences and distance from the marsh edge. Our results imply that the traditional measurement of tidal creek fluxes may lead in many cases to incorrect estimations of net sediment or nutrient budgets.  相似文献   

11.
In deltas, subsidence leads to a relative sea-level rise (RSLR) that is often much greater than eustatic rise alone. Because of high RSLR, deltaic wetlands will be affected early by an acceleration of eustatic sea-level rise. If there is sufficient vertical accretion, wetlands can continue to exist with RSLR; however, lack of sediment input eventually leads to excessive water logging and plant death. Areas with low tidal range, such as the Mediterranean and Gulf of Mexico, are especially vulnerable to rising water levels because the elevational growth range of coastal vegetation is related to tide range. Reduction of suspended sediments in rivers and prevention of wetland flooding by river dikes and impoundments have reduced sediment input to Mediterranean and Gulf of Mexico deltaic wetlands. This sediment deficit will become more important with an acceleration in sea-level rise from global warming. Most sediment input occurs during strong pulsing events such as river floods and storms, and management policies and decisions are especially designed to protect against such events. Management approaches must be reoriented to take advantage of pulsing events to nourish marsh surfaces with sediments. We hypothesize that deltas can be managed to withstand significant rates of sea-level rise by taking advantage of pulsing events leading to high sediment input, and that this type of management approach will enhance ecosystem functioning.  相似文献   

12.
Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.  相似文献   

13.
Natural radionuclides in the uranium and thorium series were measured in solid tidal phases (suspended particles, bottom sediment, surface microlayer colloids) of a salt marsh in lower Delaware. The purpose was to identify potential processes responsible for trace element cycling (sources, redistribution and exchange) in salt water marshes and with their coastal waters. Generally, concentrations of U, Th,210Pb, and210Po on the tidal solid phases suggest a general mechanism by which tidal marshes appear to be trapping the nuclides into their interiors. The processes may include transport of enriched fine particles into the marsh, capture by salt marsh grass and chemical fixation by redox processes at the sediment surface. Specifically, the uranium contents of most of the samples are similar with activity ratios234U238U≧1, indicating a mixture of detrital and nondetrital (authigenic) uranium inputs such as seawater or ground water. Since the230Th daughter is generally deficient by about 50%, the authigenic enrichment process appears to favor uranium and is potentially linked to the extensive diagenetic sulfur redox cycle of salt marsh sediments. The210Po/210Pb activity ratio is less than one on Spartina adsorbed solids, and could suggest a general process in salt marshes which favors210Pb enrichment by atmospheric fallout over enrichment of210Po on time scales of weeks which correspond to complete tide marsh exchange. A228Th/232Th activity ratio of less than unity on the solids adsorbed onto marsh grass suggests a net process whereby diffusive loss of the intermediate daughter228Ra from the adsorbed solids to tidal waters dominates over potential228Th scavenging by suspended sediment.  相似文献   

14.
Systematic morphological changes of the coastline of the outer Yangtze River mouth in response to storms versus calm weather were documented by daily surveys of tidal marshes and flats between April 1999 and May 2001 and by boat surveys offshore during this and earlier periods. The largest single event during 1999 to 2001 was Typhoon Paibaian, which eroded the unvegetated tidal flat and lower marsh and led to accretion on the middle-to-upper marsh and in the subtidal channel. The greatest erosion of 21 cm occurred at the border between the marsh and the unvegetated flat due to the landward retreat of the marsh edge during the storm. Strong waves on the flats increased suspended sediment concentration by 10–20 times. On the upper marsh, where the frequency of submergence by astronomical tides is only 3%, Typhoon Paibian led to 4 cm of accretion, accounting for 57% of the net accretion observed over the 2-yr study. Typhoon Paibian led to 4 cm of accretion, accounting for 57% of the net accretion observed over the 2-yr study. Typhoon Paibian and other large storms in the 1990s caused over 50 cm of accretion along the deep axis of the river mouth outlet channel. During calm weather, when hydrodynamic energy was dominated by tides, deposition was centered on the unvegetated flats and lower, marsh with little deposition on the high marsh and erosion in the subtidal channel. Depositional recovery of the tidal flat from typhoon-induced erosion took only several days, whereas recovery of the subtidal channel by erosion took several weeks. A conceptual model for the morphological responses of tidal marshes, flats, and subtidal channels to storms and calm weather is proposed such that sediment continually moves from regions of highest near-bed energy towards areas of lower energy.  相似文献   

15.
福建罗源湾潮滩沉积过程对人类活动和台风事件的响应   总被引:1,自引:0,他引:1  
王爱军  叶翔 《沉积学报》2013,31(4):639-645
潮滩地区是人类活动和台风事件影响最为显著的地区之一,利用潮滩沉积记录可以提取影响区域重大人类活动和台风事件的历史变化。罗源湾潮滩中上部盐沼和光滩柱状沉积物粒度分析结果显示,罗源湾潮滩沉积物以细颗粒为主,盐沼内部和潮滩中上部光滩柱状沉积物平均粒径分别为5.41~45.00 μm和5.4~68.82 μm,但在不同深度出现多次沉积物变粗的现象;利用210Pb测试计算得到的沉积速率分别为1.96 cm/a和1.23 cm/a;近年来的围填海活动导致潮间带地区沉积速率显著增大,互花米草的引种也进一步导致潮间带上部沉积速率增大。台风的强烈影响使得潮间带沉积出现间断,在沉积间断界面出现沉积物粒度变粗的现象,由此推断了近170年来显著影响罗源湾地区的台风事件沉积层的位置,并由此计算了不同时段的沉积速率。根据柱状沉积物粒度分析结果,不仅可以反演近百年来的对罗源湾产生重要影响的台风事件,也可以反演20世纪50年代以来罗源湾经历的几次较大规模的人类活动。  相似文献   

16.
The core of the turbidity maximum zone in the Saint-Lawrence Estuary is located in the North Channel and oscillates in front of the large (3×106 m2) intertidal flats and marshes of Cap Tourmente. It is shown that seasonal fluctuations in the intensity and the position of this core are mainly determined by suspended sediment exchanges between the channel and the marshes. Fine sediments, most of them found 20 km downstream in the channel off Cap Maillard in late winter and early spring, are advected upstream over the flats during the summer months by the tide. The deposition, favored by marsh plant growth, reaches 5×105 metric tons in three months. A period of intense erosion, at a mean rate of 4,500 metric tons per tide, coincides with the destruction of the plant cover by migratory geese. The material removed fills up the Chenal de l’Île d’Orléans upstream and is flushed back into the water column during the next spring freshette. This rotating seasonal sediment circulation, although very localized, exerts a major influence on the distribution and storage time of suspended particles in the upper estuary.  相似文献   

17.
The conversion of undisturbed coastal regions to commercial and suburban developments may pose a threat to surface and groundwater quality by introducing nitrate-nitrogen (NO3 ?-N) from runoff of land-applied wastewater and fertilizers. Microbial denitrification is an important NO3 ?-N removal mechanism in coastal sediments. The objective of this study was to compare denitrification and nitrate conversion rates in coastal sediments from a golf course, suburban site, undeveloped marsh, and nonmarsh area near rapidly developing Hilton Head Island, South Carolina. Nitrous oxide was measured using gas chromatography and nitrate and ammonium concentrations were measured using a flow injection autoanalyzer in microcosms spiked, with 50 μg NO3 ?-N gdw?1. The two marsh sites had the greatest ammonium production, which was correlated with fine sediment particle size and higher background sediment nitrate and surface water sulfate concentrations. The golf course swale had greatest denitrification rates, which were correlated with higher total carbon and organic nitrogen in sediments. Nitrate was consumed in golf course sediments to a greater extent than in the undeveloped marsh and upland freshwater sites, suggesting that the undeveloped sites and receiving estuaries may be more susceptible to nitrate contamination than the golf course swale and marsh under nonstorm conditions. Construction of swales and vegetated buffers using sediments with high organic carbon content as best management practices may aid in removing nitrate and other contaminants from runoff prior to its transport to the receiving marsh and estuary.  相似文献   

18.
Rates of sulfate reduction, oxygen uptake and carbon dioxide production in sediments from a short Spartina alterniflora zone of Great Sippewissett Marsh were measured simultaneously during late summer. Surface sediments (0–2 cm) were dominated by aerobic metabolism which accounted for about 45% of the total carbon dioxide production over 0–15 cm. Rates of sulfate reduction agreed well with rates of total carbon dioxide production below 2 cm depth indicating that sulfate reduction was the primary pathway for sub-surface carbon metabolism. Sulfate reduction rates were determined using a radiotracer technique coupled with a chromous chloride digestion and carbon disulfide extraction of the sediment to determine the extent of formation of radiolabelled elemental sulfur and pyrite during shortterm (48 hr) incubations. In the surface 10 cm of the marsh sediments investigated, about 50% of the reduced radiosulfur was recovered as dissolved or acid volatile sulfides, 37% as carbon disulfide extractable sulfur, and only about 13% was recovered in a fraction operationally defined as pyrite. Correlations between the extent of sulfate depletion in the marsh sediments and the concentrations of dissolved and acid volatile sulfides supported the results of the radiotracer work. Our data suggest that sulfides and elemental sulfur may be major short-term end-products of sulfate reduction in salt marshes.  相似文献   

19.
Stratigraphic records from sediment cores collected in a freshwater tidal marsh and in the estuary upstream and downstream from the marsh were used to determine the accumulation of nutrients and trace metals over long time periods. Analysis of pollen and seeds show that the high marsh has formed only within the past 100 yr, following increased sedimentation rates in the area. Variations in nutrient and trace metal accumulations over several decades show that pollutants from agricultural runoff and wastewater discharge are stored to a greater extent in high-marsh than in low-marsh sediments. Greater accumulation rates in the high marsh are probably related to its greater sedimentary organic carbon concentration.  相似文献   

20.
Nuclear facilities in coastal locations often discharge low‐level liquid wastes into the sea and the radioisotopes in these discharges are of interest both in assessing possible environmental impacts and as tracers for coastal processes. The distributions of a range of artificial radionuclides, derived from the authorized discharges from British Nuclear Fuels (BNFL) Sellafield, have been determined in the sediments of an intertidal salt marsh in the Esk Estuary, Cumbria, UK. Where published discharge histories exist (for 137Cs, 238Pu, 239,240Pu and 241Am), the sediment core‐profile distributions of these radionuclides have been compared with the releases from Sellafield, and consistent values of the accumulation rate (0·226 ± 0·007 g cm?2 yr?1) are obtained. A quantitative model has been developed, describing association of radionuclides with suspended particulate material, which is then accumulated and mixed in an offshore mud patch before resuspension and deposition in the salt marsh. The model has been used to describe radionuclide distributions observed in both the mud patch and the salt marsh, and to identify isotopes for which post‐depositional remobilization or solution transport from the discharge point are important. The behaviour of the commonly studied isotopes (137Cs, 238Pu, 239,240Pu and 241Am) is similar to that observed at this and other nearby locations. The activation product isotope 236U is enhanced in these sediments over the natural baseline by four to eight orders of magnitude, and the results suggest that Sellafield‐derived uranium is comparably mobile to 137Cs in these sediments although the processes governing the behaviour of these two elements may be different. In situ production of 241Am by decay of its 241Pu parent has generated only 17% of the current sediment inventory of this isotope, insufficient to account for the increase over the last 20–25 years, and suggesting that the input material for these sediments is preferentially enriched in Am relative to Pu during transport from the offshore mud patch. The discharge history of 244Cm, which is unknown, has also been reconstructed from the sediment profile and the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号