首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We investigate the velocity field of the solar chromosphere at the location of 65 He i 10830 dark points (DP's). We have obtained spectra of such points in the vicinity of the Ca II K line. As a measure of differential chromospheric velocity, we use the shift of the K line center relative to a nearby photospheric Fe i line. We find that in He i DP's, the distribution of K line shifts is skewed towards the blue: the blueward skewing is more pronounced in He i DP's located in coronal holes. To the extent that He i DP's are proxies of coronal bright points, our study is relevant to previous reports of outflows from such bright points.  相似文献   

2.
我们用云台一米望远镜Coudé摄谱仪得到大量的大角星(αBoo)的高分辨率光谱,从中找到1984年2月14日一组随时间变化的CallH,K线光谱。经对比分析,我们认为这可能是一次大角星的色球爆发,其特征如下:在连续观测近四小时中获得5张光谱片,可看出CallH,K线轮廓的变化。它们变化的顺序是:开始出现轮廓的不对称一轮廓仍然不对称并伴随着峰值发射增强一轮廓恢复到对称状况;K_2线中K_(2V)与K_(2r)最大不对称为20%。发射极大时K_(2S2)峰值增强20%左右。K_(1r)和K_(1V)的变化也明显。特别是K_3线在K_2线峰值增强时出现吸收线反转出发射线核。  相似文献   

3.
P. R. Wilson 《Solar physics》1970,15(1):139-147
A recent two-component model for the formation of the Caii K line in the solar chromosphere put forward by Beebe and Johnson is discussed. Although this model is a great advance on existing one-component models, it is pointed out that observations require a minimum of three components in order to understand the formation of the K2 peaks.In order to make some progress in the study of multicomponent models an adaptation of the empirical (or analytic) approach is suggested. This relates the line source function directly to observations and places a secondary importance (at this stage) on the synthetic approach to the problem. A model is obtained which is in adequate agreement with observed mean profiles and its features are briefly discussed.  相似文献   

4.
We study the Ca ii K, H, and λ 849.8 nm line profiles in two regions of the quiet Sun, one being located in the extensive low-latitude coronal hole observed on 3 through 5 August 2003, and the other being located outside the coronal hole. Comparison of the profiles was carried out separately for cells and cell boundaries of the chromospheric network. Our principal result is that space- and time-averaged profiles of the central self-reversal in the coronal hole sites differ from those outside of the hole: Intensities of the K3 and H3 central depressions are increased in the cells but are unchanged in the network; the height of the K2 peaks is reduced in the cells and particularly in the network; the central self-reversal asymmetry is intensified in the network. Distinctions appear at a high confidence level. Line wings as well as average characteristics of the infrared line remain practically unchanged. We discuss probable causes for this behavior of the lower chromosphere lines.  相似文献   

5.
R. Kariyappa 《Solar physics》1996,165(2):211-222
We have analysed a 35-min-long time sequence of spectra in the Caii H line, Nai D1 and D2 lines, and in a large number of strong and weak Fei lines taken over a quiet region at the center of the solar disk. The time series of these spectra have been observed simultaneously in these lines under high spatial, spectral, and temporal resolution at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory. We have derived the line profiles and their central intensity values at the sites of the chromospheric bright points, which are visible in the H line for easy identification. We have done a power spectrum analysis for all the lines, using their central intensity values to determine the period of oscillations. It is shown that the 3 Fei lines, present 23 Å away from the core of the H line representing the pure photospheric lines, Nai D1 and D2 lines, 6 Fei lines at the wings of H line, and Can H line exhibit 5-min, 4.05-min, 3.96-min, and 3.2-min periodicity in their intensity oscillations, respectively. Since all these lines form at different heights in the solar atmosphere from low photosphere to middle chromosphere and show different periodicities in their intensity oscillations, these studies may give an idea about the spatial and temporal relation between the photospheric and chromospheric intensities. Therefore these studies will help to better understand the physical mechanisms of solar oscillations. It is clearly seen that the period of intensity oscillations decreases outward from the low photosphere to the middle chromosphere. Since we have studied a single feature at a time on the Sun (i.e., bright points seen in the H line) in all these spectral lines simultaneously, this may explain about the footpoints of the bright points, the origin of 3-min oscillations, and the relation to other oscillations pertaining to these locations on the Sun. We have concluded that 80% of the bright points are associated with dark elements in the true continuum, and they may seem to have a relationship with the dark intergranular lanes of the photosphere, after carefully examining the brightness (bright threads) extending from the core to the far wings of the H line at the locations of a large number of bright points, using their time sequence of spectra.NRC Resident Research Associate, on leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

6.
The rare-earth ions cerium ii, lanthanum ii, dysprosium ii, and additionally zirconium ii and iron ii, are seen as weak emission features in the wings of the solar Ca ii H and K lines. The strength of these emission lines increases on the disk toward the limb. We provide recent high-resolution observations at disk center and at the limb. The identity of the weak lines is re-worked. We point out the unique role of eclipse spectra in distinguishing between the photospheric and chromospheric origins of emission lines. It is then demonstrated from our full disk (Sun-as-a-Star) and center disk archives, 1974 – 2010, that no activity cycle related signal is evident (save for the H and K lines themselves).  相似文献   

7.
Mean profiles of eighteen neutral iron lines of varying strengths were measured at selected positions from the center of the solar disk to the limb. These profiles were obtained by rapid photoelectric scanning of the spectrum with a double-pass spectrometer. The Fe i lines selected are representative of most of the stronger low-lying transitions in the neutral iron atom. In addition to the iron lines, this observational program includes center-to-limb measurements of three Ti ii lines and of the Ca i resonance line 4226.7. The line profiles are presented here in graphical form after correction for instrumental effects and normalization to the local disk center continuum.Both Kitt Peak National Observatory and the National Center for Atmospheric Research are sponsored by the National Science Foundation.  相似文献   

8.
Measurements of the ionized Ca ii K line are one of the major resources for long-term studies of solar and stellar activity. They also play a critical role in many studies related to solar irradiance variability, particularly as a ground-based proxy to model the solar ultraviolet flux variation that may influence the Earth’s climate. Full disk images of the Sun in Ca ii K have been available from various observatories for more than 100 years and latter synoptic Sun-as-a-star observations in Ca ii K began in the early 1970s. One of these instruments, the Integrated Sunlight Spectrometer (ISS) has been in operation at Kitt Peak (Arizona) since late 2006. The ISS takes daily observations of solar spectra in nine spectra bands, including the Ca ii K and H lines. We describe recent improvements in data reduction of Ca ii K observations, and present time variations of nine parameters derived from the profile of this spectral line.  相似文献   

9.
Spectral line profiles of Si ii and Si iii are presented which were observed both at solar center and near the quiet solar limb with the Naval Research Laboratory EUV spectrograph of ATM/SKYLAB. Absolute intensities and line profiles are derived from the photographic data. A brief discussion is given of their center-to-limb variations and of the optical thickness of the chromosphere in these lines. Nonthermal broadening velocities are found for the optically thin lines from their full width at half maximum intensity (FWHM).Also at High Altitude Observatory for part of this work.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
Engvold  O.  Jensen  E.  Andersen  B. N. 《Solar physics》1979,62(2):331-341
The kinematics of a loop system has been studied from high resolution Ca ii K line spectra and H filtergrams recorded at Oslo Solar Observatory.Emission features are seen to fall at supersonic velocities from the top of the arches towards the chromosphere. Our data are in agreement with the assumption of matter falling freely along a dipole type magnetic field of maximum height 100–150 thousand km. There is a slight asymmetry between positive and negative line shifts which can be accounted for as a tilt of the individual loops relative to the plane of the sky of 5–10°. The planes of the loops are also inclined by a small angle of approximately 15°. It appears that matter starts from rest at the top of the loops. An observed tilt of some emission features in the K line spectra may be explained by a gradient in the line-of-sight velocity with height caused by the curvature of the dipole type loops.  相似文献   

11.
We compare high-resolution spectra from the Sun and the four solar-type stars 16 Cyg A, 16 Cyg B, HD 32008, HD 34411 obtained with IUE in the wavelength range 2650–2930 Å. The comparison is made for peak intensities between absorption lines. At the level of accuracy of the IUE observations, the stars 16 Cyg A, 16 Cyg B, HD 34411 are indistinguishable from the Sun, in particular the Mgii resonance line profiles are identical. HD 32008 is not a solar analog but is evidently of late G to early K spectral type.Based on observations with the International Ultraviolet Explorer collected at the Villafranca Satellite Tracking Station of the European Space Agency.  相似文献   

12.
The center-to-limb behaviour of the Ba ii 4554 resonance line is analyzed together with data from the extreme limb, flash intensities and profiles of other Ba ii lines. An empirical NLTE method is employed in which the observed profiles are compared with synthesized profiles based on a standard one-dimensional model atmosphere, with the line source function, the barium abundance, the collisional damping and the atmospheric turbulence as free parameters.The line profiles from the extreme limb furnish considerable constraints on the formation of Ba ii 4554. Its wings reverse into emission well inside the solar limb, a phenomenon which cannot be explained by any frequency-independent line source function. Accounting for effects of partially coherent scattering in the line source function is a necessary and adequate step to reproduce the observations both over the disk and near the limb. The form of the empirically derived frequency-dependent line source function is discussed.Results are given for various parameters (gf-values, solar barium abundance and isotope ratios, collisional damping, microturbulence and macroturbulence).The 4554 profile of disk center shows a depression in its blue wing resembling asymetries found in various stellar spectral lines.  相似文献   

13.
A power-spectrum and cross-spectrum analysis has been made of measurements of temporal fluctuations of intensity observed in the K-line wing (2.07 Å from line center) and of simultaneous measurements of temporal fluctuations of Doppler displacement of the cores of 3931.122 Fe i and 3933 Ca ii (K3). The measurements were made in a quiet region near the center of the Sun's disk. We find that the average power spectra of the intensity fluctuations have two significant peaks of about equal strength: one at 0.0033 Hz (300-s period); and one at about 0.001 Hz (1000-s period). The average rms value of these intensity fluctuations is 0.0435±0.0082. Maximum brightness comes before maximum violet displacement of the Fe i line. The mean of the best determined phases is 137° and of all the data 108°. At those places on the Sun where the 300-s oscillations can be identified in the k3 core, the Doppler displacement of the Fe i line leads that of the K3 core by a mean phase angle of 27°.  相似文献   

14.
R. Kariyappa  J. M. Pap 《Solar physics》1996,167(1-2):115-123
We have digitized the Ca ii K spectroheliograms, observed at the National Solar Observatory at Sacramento Peak, for the period 1980 (maximum of solar cycle 21), 1985 (minimum of solar cycle 21), 1987 (beginning of the ascending phase of solar cycle 22), 1988 and 1989 (ascending phase and maximum of solar cycle 22), and 1992 (declining phase of solar cycle 22). A new method for analyzing the K spectroheliograms has been developed and applied to the K images for the time interval of 1992. Using histograms of intensity, we have segregated and measured the cumulative intensity and area of various chromospheric features like the plages, magnetic network and intranetwork elements. Also, the full width at half maximum (FWHM) derived from the histograms has been introduced as a new index for describing the chromospheric activity in the K-line. The full-disk intensity (spatial K index) has been derived from spatially-resolved K images and compared to the spectral K index derived from the line profiles for the full disk. Both the spatial K index and FWHM have been compared to the UV irradiance measured in the Mg ii h and k lines by the NOAA9 satellite and found that they are highly correlated with the Mg ii h and k c/w ratio.NRC Resident Research Associate, on leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

15.
A detailed photometric comparison between a Mgii K filterheliogram and a nearly simultaneous Caii K spectroheliogram is presented. The comparison shows a close correspondence in both location and intensity of the bright features on the Sun with a correlation coefficient of 0.92 ± 0.02 between the Mgii and the Caii intensities in active regions.A small flare is most likely observed in the Mgii heliogram giving a substantial contribution to the recorded intensity.We also estimate theoretically the heights in the solar atmosphere at which the Mgii K and Caii K lines are formed. Taking into account the general shape of the line profiles and the different passbands used in the recordings we arrive at an average height of formation of 1700–1900 km above the photosphere for these particular heliograms.  相似文献   

16.
We studied the EUV line spectra of three flare observed with the NRL slit spectrograph on Skylab. The electron densities in the flare transition-zone plasmas are determined from density-sensitive lines of Si iii and O iv. The electron densities in all three flares studied were greatest during the flare maximum with values of the order of 1012 cm–3. The density decreases by a factor of 2 to 3 in the decay phase of the flares. The intensities of EUV lines from the flare chromospheric and transition-zone plasmas all are greatly enhanced. In contrast to lines for Oi, Ci, Feii and other chromospheric ions, the lines of Oiv and Nv and other transition-zone lines are not only enhanced but also very much broadened.Fitting of the N v 1242 Å line with a two-gaussian model shows that for two of the flares studied, there is a red-shifted component in addition to an unshifted component. The shifted component in the N v line profiles is interpreted as due to a dynamic and moving plasma with a bulk motion velocity of 12 km s–1 for one flare and more than 70 km s–1 for the other. The broadened line profiles indicate that there are large turbulent mass motions with random velocities ranging from 30 to 80 km s–1.Ball Corporation. Now with NASA/Marshall Space Flight Center.  相似文献   

17.
With the purpose of detecting periodic oscillations or waves in a quiescent prominence, temporal variations of a Ca ii K line profile have been studied. The most conspicuous phenomenon found here is the fact that the edge of the prominence showed, over some 20000 km along the spectrograph-slit, periodic velocity fluctuations of nearly the same phase with periods of 210–240 s and with an amplitude of up to ± 2 kms –1. At other portions, several different periods of peaks (160–400 s) can also be seen in the power spectra, but less distinctly. As to the intensity and the line width, however, no periodic variations have been detected.  相似文献   

18.
O vi ( = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H i, Mg ii, Ca ii resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb.Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3); at the top of the prominence (15 above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s–1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s–1) is lower than in Ca ii lines.The O vi profile recorded 30 above the limb outside the filament is wider (FWHM = 0.33 Å). It can be interpreted as a coronal emission of O vi ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s–1. This NTV is twice the NTV of quiet Sun center O vi profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of euv lines.  相似文献   

19.
The purpose of this paper is to report on some intensity measurements of the Fe xiii lines at 10 747 Å and 10 798 Å made during the total eclipse of 12 November, 1966. Infrared spectra were taken of the solar corona at a dispersion of 90 Å per mm, using an RCA image converter and spectrograph aboard the NASA CV 990 aircraft off the coast of southern Brazil. The spectra have been reduced to equivalent width in terms of the coronal continuum and values derived for different points in the corona.The observed equivalent widths of the lines lie in the range 10 to 30 Å for the 10 747 line and 5 to 12 Å for the 10 798 line. The ratio of these equivalent widths is found to vary from 2.3 in the inner corona to 6 at a point 1.36 solar radii from the center of the Sun.The above results are discussed in terms of the excitation mechanisms involved in producing the lines. In particular, the results are compared with the recent theoretical calculations of Chevalier and Lambert, who are the first to include the effects of proton collisions in the excitation of the 3p 2 3 P levels of Fexiii. Our observations are consistent with an electron density of 4 × 108 in the inner corona; a value which compares favorably with those derived by other observers from the strength of the K continuum. These are, to our knowledge, the first eclipse observations of the infrared Fe xiii lines which indicate that proton collisions are important in the excitation of the coronal lines. The coronal abundance of iron is estimated from the equivalent width of the 10 747 line, and in common with other observers we find an overabundance as compared to the photospheric abundance by a factor of 10.  相似文献   

20.
A series of spatial intensity profiles across the sunspot penumbra is obtained at different wavelengths within the Caii K line (see Figure 1). A number of photometric properties of the penumbra are outlined, which may be useful for constructing a relevant inhomogeneous model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号