首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Einstein's field theory of elementary particles (Einstein 1919) yields black holes with a mass M ˜ G−1 Λ−1/2c2 and a charge Q ˜ G−1/2λ−1/2c2, their curvatu re radius is Λ−1/2. Here 4Λ is an integration constant of Einstein's ‘trace-less’ gravitation equations. The choice λ = G−1h−1c3 for this constant defines Planckions and implies “strong gravity”. The choice λ = λ = 3Hinf2c−2 (where Hinf means the Hubble parameter of a final de Sitter cosmos) involves “weak gravity” and describes an electro-vac spherical universe.  相似文献   

2.
In the light of the experiments /3,4/ showing that neutrinos may have a non-zero rest-mass, we discuss the constraints placed on the cosmological term Λ and the Hubble constant Ho by such a mass and the age of the universe in the Lemaitre model. An upper limit of Λ of 15 × 10?57/cm2 and possible ranges of Ho are given.  相似文献   

3.
We prove here that Newton’s universal gravitation and momentum conservation laws together reproduce Weinberg’s relation. It is shown that the Hubble parameter H must be built in this relation, or equivalently the age of the Universe t. Using a wave-to-particle interaction technique we then prove that the speed of light c decreases with cosmological time, and that c is proportional to the Hubble parameter H. We see the expansion of the Universe as a local effect due to the LAB value of the speed of light c 0 taken as constant. We present a generalized red shift law and find a predicted acceleration for photons that agrees well with the result from Pioneer 10/11 anomalous acceleration. We finally present a cosmological model coherent with the above results that we call the Mass-Boom. It has a linear increase of mass m with time as a result of the speed of light c linear decrease with time, and the conservation of momentum mc. We obtain the baryonic mass parameter equal to the curvature parameter, Ω m k , so that the model is of the type of the Einstein static, closed, finite, spherical, unlimited, with zero cosmological constant. This model is the cosmological view as seen by photons, neutrinos, tachyons etc. in contrast with the local view, the LAB reference. Neither dark matter nor dark energy is required by this model. With an initial constant speed of light during a short time we get inflation (an exponential expansion). This converts, during the inflation time, the Planck’s fluctuation length of 10?33 cm to the present size of the Universe (about 1028 cm, constant from then on). Thereafter the Mass-Boom takes care to bring the initial values of the Universe (about 1015 gr) to the value at the present time of about 1055 gr.  相似文献   

4.
This work reports on a study of the spatially coarse‐grained velocity dispersion in cosmological N‐body simulations (OCDM and ΛCDM models) as a function of time (redshifts z = 0–4) and of the coarsening length (0.6–20 h−1 Mpc). The main result is the discovery of a polytropic relationship ℐ1ϱ2–η between the velocity‐dispersion kinetic energy density of the coarsening cells, ℐ1, and their mass density, ϱ. The exponent η, dependent on time and coarsening scale, is a compact measure of the deviations from the naive virial prediction ηvirial = 0. This relationship supports the “polytropic assumption” which has been employed in theoretical models for the growth of cosmological structure by gravitational instability. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The possibility that the cosmological term is proportional toGU, whereG is the gravitational coupling andU is the mass density of the universe is proposed and discussed. WithG = constant, a cosmological model is obtained, which avoids the flatness and horizon problems and does not affect the well known predictions on the cosmic helium abundance which come from standard big bang cosmology. In such model, the deceleration parameter is a null constant, there is matter creation process throughout the universe at the rate 10–47 g cm–3 s–1 and the cosmological term varies asH 2 =t –2, whereH is the Hubble constant andt is the cosmic time.The possibility of a time-dependentG is then considered. The main consequence of this is that there is a mass creation process on the local scale; the rate of mass creation inside a body of massM is dM/dt =M H. In Section 6 it is suggested that the new matter might be in the form of neutrinos. This suggestion leads to an interesting consequence in celestial mechanics: the radius of a binary system should depend on time according to the nature of the components (the radius of a binary star should decrease, the radius of a planet-moon system should expand, and the orbital radius of a planet should stay constant).  相似文献   

6.
In 1937 Dirac proposed the large number hypothesis (LNH). The idea was to explain that these numbers were large because the Universe is old. A time variation of certain “constants” was assumed. So far, no experimental evidence has significantly supported this time variation. Here we present a simplified cosmological model. We propose a new cosmological system of units, including a cosmological Planck’s constant that “absorbs” the well known large number 10120. With this new Planck’s constant no large numbers appear at the cosmological level. They appear at lower levels, e.g. at the quantum world. We note here that Zel’dovich formula, for the cosmological constant Λ, is equivalent to the Weinberg’s relation. The immediate conclusion is that the speed of light c must be proportional to the Hubble parameter H, and therefore decrease with time. We find that the gravitational radius of the Universe and its size are one and the same constant (Mach’s principle). The usual cosmological Ω’s parameters for mass, lambda and curvature turn out to be all constants of order one. The anthropic principle is not necessary in this theory. It is shown that a factor of 1061 converts in this theory a Planck fluctuation (a quantum black hole) into a cosmological quantum black hole: the Universe today. General relativity and quantum mechanics give the same local solution of an expanding Universe with the law a(t)≈const?t. This constant is just the speed of light today. Then the Hubble parameter is exactly H=a(t)′/a(t)=1/t.  相似文献   

7.
The present paper outlines a cosmological paradigm based upon Dirac’s large number hypothesis and continual creation of matter in a closed static (nonexpanding) universe. The cosmological redshift is caused by the tired-light phenomenon originally proposed by Zwicky. It is shown that the tired-light cosmology together with continual matter creation has a universal Hubble constant H 0=(512π 2/3)1/6(GC 0)1/3 fixed by the universal rate C 0 of matter creation, where G is Newton’s gravitational constant. It is also shown that a closed static universe has a finite age τ 0=(243π 5/8GC 0)1/3 also fixed by the universal rate of matter creation. The invariant relationship H 0 τ 0=3π 261/2 shows that a closed static universe is much older (≈one trillion years) than any expanding universe model based upon Big-Bang cosmology. It is this property of a static universe that resolves any cosmic age crisis provided that galaxy formation in the universe is a continual recurring process. Application of Dirac’s large number hypothesis gives a matter creation rate C 0=4.6×10?48 gm?cm?3?s?1 depending only on the fundamental constants of nature. Hence, the model shows that a closed static universe has a Hubble constant H 0=70 km?s?1?Mpc?1 in good agreement with recent astronomical determinations of H 0. By using the above numerical value for H 0 together with observational data for elongated cellular-wall structures containing superclusters of galaxies, it is shown that the elongated cellular-wall configurations observed in the real universe are at least one hundred billion years old. Application of the microscopic laws of physics to the large-scale macroscopic universe leads to a static eternal cosmos endowed with a matter-antimatter symmetry. It is proposed that the matter-antimatter asymmetry is continuously created by particle-antiparticle pair annihilation occurring in episodic cosmological gamma-ray bursts observed in the real universe.  相似文献   

8.
9.
The product of two empirical constants, the dimensionless fine-structure constant (α) and the von Klitzing constant (R k, an electrical resistance), turns out to be an exact dimensionless number. Then the accuracy and cosmological time variation (if any) of these two constants can be tied together. Also this product defines a natural unit of the electrical resistance, the inverse of a quantum of conductance. When the speed of light c is taken away from α, as has been shown elsewhere, the constancy of α implies the constancy of the ratio e 2/h (the inverse of the von Klitzing constant), e being the charge of the electron and h the Planck constant. This forces the charge of the electron e to be constant as long as the action h (an angular momentum) is a true constant too. From the constancy of the Rydberg constant the Compton wavelength, h/mc, is then a true constant and consequently there is no expansion at the quantum mechanical level. The momentum mc is also a true constant and then general relativity predicts that the universe is not expanding, as shown elsewhere. The time variation of the speed of light explains the observed Hubble red shift. And there is a mass-boom effect. From this a coherent cosmological system of constant units can be defined.  相似文献   

10.
We have detected new HD absorption systems at high redshifts, z abs = 2.626 and z abs = 1.777, identified in the spectra of the quasars J0812+3208 and Q1331+170, respectively. Each of these systems consists of two subsystems. The HD column densities have been determined: log N HDA = 15.70 ± 0.07 for z A = 2.626443(2) and log N HDB = 12.98 ± 0.22 for z B = 2.626276(2) in the spectrum of J0812+3208 and log N HDC = 14.83 ± 0.15 for z C = 1.77637(2) and log N HDD = 14.61 ± 0.20 for z D = 1.77670(3) in the spectrum of Q1331+170. The measured HD/H2 ratio for three of these subsystems has been found to be considerably higher than its values typical of clouds in our Galaxy.We discuss the problem of determining the primordial deuterium abundance, which is most sensitive to the baryon density of the Universe Ωb. Using a well-known model for the chemistry of a molecular cloud, we have estimated the isotopic ratio D/H=HD/2H2 = (2.97 ± 0.55) × 10−5 and the corresponding baryon density Ωb h 2 = 0.0205−0.0020+0.0025. This value is in good agreement with Ωb h 2 = 0.0226−0.00060.0006 obtained by analyzing the cosmic microwave background radiation anisotropy. However, in high-redshift clouds, under conditions of low metallicity and low dust content, hydrogen may be incompletely molecularized even in the case of self-shielding. In this situation, the HD/2H2 ratio may not correspond to the actual D/H isotopic ratio. We have estimated the cloud molecularization dynamics and the influence of cosmological evolutionary effects on it.  相似文献   

11.
The value of Hubble parameter (H0) is determined using the morphologically type dependent Ks-band Tully-Fisher Relation (K-TFR). The slope and zero point are determined using 36 calibrator galaxies with ScI morphology. Calibration distances are adopted from direct Cepheid distances, and group or companion distances derived with the Surface Brightness Fluctuation Method or Type Ia Supernova. It is found that a small morphological type effect is present in the K-TFR such that ScI galaxies are more luminous at a given rotational velocity than Sa/Sb galaxies and Sbc/Sc galaxies of later luminosity classes. Distances are determined to 16 galaxy clusters and 218 ScI galaxies with minimum distances of 40.0 Mpc. From the 16 galaxy clusters a weighted mean Hubble parameter of H0 = 84.2 ± 6 km s−1 Mpc−1 is found. From the 218 ScI galaxies a Hubble parameter of H0 = 83.4 ± 8 km s−1 Mpc−1 is found. When the zero point of K-TFR is corrected to account for recent results that find a Large Magellanic Cloud distance modulus of 18.39±0.05, a Hubble parameter of 88.0 ± 6 km s−1 Mpc−1 is found. Effects from Malmquist bias are shown to be negligible in this sample as galaxies are restricted to a minimum rotational velocity of 150 km s−1. It is also shown that the results of this study are negligibly affected by the adopted slope for the K-TFR, inclination binning, and distance binning. A comparison with the results of the Hubble Key Project (Freedman et al. 2001) is made. Discrepancies between the K-TFR distances and the HKP I-TFR distances are discussed. Implications for Λ-CDM cosmology are considered with H0 = 84 km s−1 Mpc−1. It is concluded that it is very difficult to reconcile the value of H0 found in this study with ages of the oldest globular clusters and matter density of the universe derived from galaxy clusters in the context of Λ-CDM cosmology.  相似文献   

12.
During the collision of interstellar clouds a partial separation between gas and dust occurs. It can be expected that also a separation between heavier and lighter dust particles takes place. To determine the ratio of this dynamical effect the way of dust particles with different values of the product a · ϱp (a radius; ϱp density of the particles) during the three successive cooling periods is numerically calculated. It is shown that the heavier particles (a · ϱp ⪊ 5 · 10−5 g/cm2) at the end of the collision and the expansion period are gathered in a thin sheet in the inner parts of the new-built cloud whereas the lighter ones (a · ϱp 1 · 10−5 g/cm2) are distributed more or less uniformly among the gas of the cloud. The growth or destruction of the dust particles are not taken into account in this paper.  相似文献   

13.
The absorption effects at the soft X-ray and hard ultraviolet wavelengths due to some model abundance of intergalactic carbon material have been investigated for different cosmologies. Even though the local density, 2 × 109 <ϱ 0 = 1.0 × 10−34 g cm−3 of the absorbing component of the intergalactic material in the form of carbon is not adequate for the thermalization of the discrete background radiation, the amount of absorption in the X-rays up to the Hubble radius is not negligible.  相似文献   

14.
The peculiar galaxy NGC 4650 A (α=12h 42m. 1; = δ—40° 26′; 1950·0) has been studied by means of direct and spectral observations with the ESO 3·6-m telescope. It is interpreted as a prolate, elliptical galaxy surrounded by a warped ring of H II regions, dust and stars. The distance is 47 Mpc (H 0=55 km s−1 Mpc−1). The ring is seen nearly edge-on (inclination 85°) and it rotates. It has a diameter of about 21 kpc and is bluer than the elliptical galaxy for which the (M/L v) ratio is ∼12 in solar units. The observed configuration may be the result of interaction with the nearby galaxy, NGC 4650.  相似文献   

15.
Bobylev  V. V.  Bajkova  A. T. 《Astronomy Letters》2019,45(6):331-340

We have studied a sample containing ~6000 OB stars with proper motions and trigonometric parallaxes from the Gaia DR2 catalogue. The following parameters of the angular velocity of Galactic rotation have been found: Ω0 = 29.70 ± 0.11 km s-1 kpc-1, Ω'0 = -4.035 ± 0.031 km s-1 kpc-2, and Ω 0 = 0.620 ± 0.014 km s-1 kpc-3. The circular rotation velocity of the solar neighborhood around the Galactic center is V0 = 238 ± 5 km s-1 for the adopted Galactocentric distance of the Sun R0 = 8.0 ± 0.15 kpc. The amplitudes of the tangential and radial velocity perturbations produced by the spiral density wave are fθ = 4.4 ± 1.4 kms-1 and fR = 5.1 ± 1.2 kms-1, respectively; the perturbation wavelengths are λθ = 1.9 ± 0.5 kpc and λR = 2.1 ± 0.5 kpc for the adopted four-armed spiral pattern. The Sun's phase in the spiral density wave is χ = -178° ± 12°.

  相似文献   

16.
On the basis of photographs from the 6 m Large Azimuthal Telescope and the Hubble Space Telescope, VRI photometry of stars in 11 galaxies in the NGC 1023 group has been carried out. The distances to these galaxies were determined by the method of brightest stars. The distances to NGC 925 and NGC 1023 were determined from the position of the top of the red giant branch (the TRGB method). From the calculated average and root-mean-square distances to the NGC 1023 group (10.3 ± 2.2 Mpc and 9.7 ± 0.5 Mpc) the Hubble constant in this direction was determined: H 0R = 75 ± 8 km·sec-1·Mpc-1 and H 0M = 81 ± 5 km ·sec-1·Mpc-1.  相似文献   

17.
A relation between the redshift z of QSO's and their colour index (B–V)' corrected for line emission and galactic absorption is interpreted in terms of an intergalactic selective extinction. The observed amount of extinction corresponds to a density of intergalactic dust grains of about 10−34 to 10−33 g cm−3 at z = 0. The life-time of these particles are estimated to be longer than the Hubble -time at present. But at large z the life-time of the grains considerably depends on the flux density of cosmic rays. Some implications of the existence of intergalactic dust are discussed.  相似文献   

18.
The various measurements of the linear matter density perturbation amplitude obtained from the observations of the cosmic microwave background (CMB) anisotropy, weak gravitational lensing, galaxy cluster mass function, matter power spectrum, and redshift space distortions are compared. The Planck data on the CMB temperature anisotropy spectrum at high multipoles, ? > 1000 (where the effect of gravitational lensing is most significant), are shown to give a measurement of the matter density perturbation amplitude that contradicts all other measurements of this quantity from both Planck CMB anisotropy data and other data at a significance level of about 3.7σ. Thus, at present these data should not be combined together for the calculations of constraints on cosmological parameters. Except for the Planck data on the CMB temperature anisotropy spectrum at high multipoles, all the remaining measurements of the density perturbation amplitude agree well between themselves and give the following constraints: σ8 = 0.792± 0.006 on the linear matter density perturbation amplitude, Ωm = 0.287± 0.007 on the matter density parameter, and H0 = 69.4 ± 0.6 km s?1 Mpc?1 on the Hubble constant. Various constraints on the sum of neutrino masses and the number of neutrino flavors can be obtained by additionally taking into account the data on baryon acoustic oscillations and (or) direct Hubble constant measurements in the local Universe.  相似文献   

19.
We present the results of our BV R c I c CCD photometry for six Galactic open star clusters toward the Perseus spiral armperformed at the Special Astrophysical Observatory of the Russian Academy of Sciences. Based on these data and using JHK s photometry from the 2MASS catalog, we have determined the ages, distances, and color excesses for the clusters: 710 Myr, 2960−340+400 pc, 0· m 56 ± 0· m 04 (King 13); 130 Myr, 3010−280+300 pc, 0· m 69 ± 0· m 04 (King 18); 560 Myr, 2630−270+310 pc, 0· m 69 ± 0· m 08 (King 19); 160 Myr, 1750−70+80 pc, 0· m 77 ± 0· m 05 (King 20); 250 Myr, 5220−320+350 pc, 0· m 70 ± 0· m 09 (NGC 136); 320 Myr, 3390−200+210 pc, 0· m 43 ± 0· m 03 (NGC 7245).  相似文献   

20.
In this work we propose cyclical reversible transitions as the scenario in which the universe evolves, through a series consisting of reversible expansion, temporary stability, and contraction. Our model is based on the comparison between local and global time-dependent densities {ρ 0(τ 0),ρ(τ)} instead of the critical density ρ c, local and global time-dependent Hubble parameters {H 0(τ 0),H(τ)}, and the variations {Δρ(τ),ΔH(τ)} due to cosmological chaotic fluctuations, which are generally ignored in certain oscillating models. By taking into account all these factors, a rate equation in the form of (H 0/H)2 (ρ 0/ρ) has been established, and from it we derive some others, to provide a mechanism that is responsible for the cyclical reversible transitions. Also, the problems of singularities, black hole overproduction, and the second law of thermodynamics arising in oscillating universe models are conceptually resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号