首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The pollution and deterioration of most important vital rivers in the Katanga region, Democratic Republic of Congo (DRC) are mainly due to the discharge of untreated industrial effluents as well as to the mining and artisanal mineral exploitation activities. In this study, the concentrations of metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, and Pb) and major elements (Na, Mg, and K) in mining effluents, water and sediment samples of two main rivers of the district of Kolwezi (Katanga, DRC) were subjected to analysis by Inductive Coupled Plasma-Mass Spectroscopy (ICP-MS). The results showed that, in general, the metal concentrations in the sampling sites from the mining effluent and river waters exceed largely the World Health Organization and the Aquatic Quality Guidelines for the Protection of Aquatic Life recommendation limits. The highest metal concentrations in water and sediment samples were detected surrounding the mining effluents discharge. In the surface sediments of Luilu River, the values of 47,468 and 13,199 mg kg−1 were observed for Cu and Co, respectively. For the sediment samples from Musonoie River, the maximum values of 370.8 and 240.6 mg kg−1 for Cu and Co, respectively were observed. The results of this study suggest that the mining effluents being discharged into the rivers and the accumulation of pollutants in sediments might represent a source of toxicity for aquatic living organisms and could pose significant human health risks. The measures to establish a monitoring program and the application of wastewater treatment techniques to the mining effluents prior to discharge are recommended to reduce the load of contaminants into the receiving systems.  相似文献   

2.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

3.
《Applied Geochemistry》2006,21(10):1760-1780
Sulfide-rich mine tailings in Adak that are exposed to weathering cause acid mine drainage characterized by low pH (2–4) and high SO4 (up to 800 mg L−1). Surface water, sediment and soil samples collected in this study contain higher concentrations of As, Cu, Fe and Zn, compared to the target and/or intervention limits set by international regulatory agencies. In particular, high As concentrations in water (up to 2900 μg L−1) and sediment (up to 900 mg kg−1) are of concern. There is large variability in trace element concentrations, implying that both physical (grain size) and chemical factors (pH, secondary phases as sulfides, Al-oxides or clay minerals) play an important role in their distribution. The low pH keeps the trace elements dissolved, and they are transported farther downstream. Trace element partition coefficients are low (log Kd = 0.3–4.3), and saturation indices calculated with PHREEQC are <0 for common oxide and sulfidic minerals. The sediment and soil samples indicate an enhanced pollution index (up to 17), and high enrichment factors for trace elements (As up to 38,300; Zn up to 800). Finally, leaves collected from different plant types indicate bioaccumulation of several elements (As, Al, Cu, Fe and Zn). However, some of the plants growing in this area (e.g., Salix, Equisétum) are generally resistant to metal toxicity, and hence, liming and phytoremediation could be considered as potential on-site remediation methods.  相似文献   

4.
The current study was designed to investigate the extent and severity of contamination as well as the fractionation of potentially toxic elements (As, Cd, Cr, Cu, Pb, Zn, Ni) in minesoils and agricultural soils around a Pb–Zn mine in central Iran. For this purpose, 20 agricultural soils and eight minesoils were geochemically characterized. Results showed that minesoils contained elevated concentrations of As (12.9–254 mg kg−1), Cd (1.2–55.1 mg kg−1), Pb (137–6239 mg kg−1) and Zn (516–48,889 mg kg−1). The agricultural soils were also polluted by As (5.5–57.1 mg kg−1), Cd (0.2–8.5 mg kg−1), Pb (22–3451 mg kg−1) and Zn (94–9907 mg kg−1). The highest recorded concentrations for these elements were in soils influenced directly by tailing ponds. Chromium, Cu and Ni content in agricultural soils (with average value of 74.1, 34.6 and 50.7 mg kg−1, respectively) were slightly higher than the minesoils (with average value of 54.5, 33.1 and 43.4 mg kg−1, respectively). Sequential extraction data indicated that there were some differences between the speciation of PTEs in soil samples. In the agricultural soils, Zn and Cd were mainly associated with carbonate bound fraction, As and Pb with reducible fraction, Cu with oxidisable fraction and Cr and Ni with residual phase. With respect to mobility factor values, Zn and Cd in the agricultural soils have been found to be the most mobile while As mobility is negligible. Also, the mobility factor of As, Cd and Pb in agricultural soils adjoining tailing ponds was high. In minesoil sample Cd was most abundant in the carbonate form, whereas other studied elements were mainly present in the reducible and residual fractions; therefore, despite the high total concentrations of As, Pb and Zn in the minesoils, the environmental risk of these elements was low. Based on the obtained data, a portion of Cu, Cr and Ni input was from agricultural activities.  相似文献   

5.
《Applied Geochemistry》2005,20(3):627-638
Concentrations of total Hg and methylmercury (MMHg) in riparian soil, mine-waste calcine, sediment, and moss samples collected from abandoned Hg mines in Wanshan district, Guizhou province, China, were measured to show regional dispersion of Hg-contamination. High total Hg and MMHg concentrations obtained in riparian soils from mined areas, ranged from 5.1 to 790 mg kg−1 and 0.13 to 15 ng g−1, respectively. However, total Hg and MMHg concentrations in the soils collected from control sites were significantly lower varying from 0.1 to 1.2 mg kg−1 and 0.10 to 1.6 ng g−1, respectively. Total Hg and MMHg concentrations in sediments varied from 90 to 930 mg kg−1 and 3.0 to 20 ng g−1, respectively. Total Hg concentrations in mine-waste calcines were highly elevated ranging from 5.7 to 4400 mg kg−1, but MMHg concentrations were generally low ranging from 0.17 to 1.1 ng g−1. Similar to the high Hg concentrations in soil and sediments, moss samples collected from rocks ranged from 1.0 to 95 mg kg−1 in total Hg and from 0.21 to 20 ng g−1 in MMHg. Elevated Hg concentrations in mosses suggest that atmospheric deposition might be an important pathway of Hg to the local terrestrial system. Moreover, the spatial distribution patterns of Hg contamination in the local environment suggest derivation from historic Hg mining sites in the Wanshan area.  相似文献   

6.
Three large-scale experimental waste rock piles (test piles) were constructed and instrumented at the Diavik Diamond Mine in the Northwest Territories, Canada, as part of an integrated field and laboratory study to measure and compare physical and geochemical characteristics of experimental, low sulfide waste rock piles at various scales. This paper describes the geochemical response during the first season from a test pile containing 0.053 wt.% S. Bulk drainage chemistry was measured at two sampling points for pH, Eh, alkalinity, dissolved cations and anions, and nutrients. The geochemical equilibrium model MINTEQA2 was used to interpret potential mineral solubility controls on water chemistry. The geochemical response characterizes the initial flushing response of blasting residues and oxidation products derived from sulfides in waste rock exposed to the atmosphere for less than 1 year. Sulfate concentrations reached 2000 mg L−1 when ambient temperatures were >10 °C, and decreased as ambient temperatures declined to <0 °C. The pH decreased to <5, concomitant with an alkalinity minimum of <1 mg L−1 (as total CaCO3), suggesting all available alkalinity is consumed by acid-neutralizing reactions. Concentrations of Al and Fe were <0.36 and <0.11 mg L−1, respectively. Trends of pH and alkalinity and the calculated saturation indices for Al and Fe (oxy)hydroxides suggest that dissolution of Al and Fe (oxy)hydroxide phases buffers the pH. The effluent water showed increased concentrations of dissolved Mn (<13 mg L−1), Ni (<7.0 mg L−1), Co (<1.5 mg L−1), Zn (<0.5 mg L−1), Cd (<0.008 mg L−1) and Cu (<0.05 mg L−1) as ambient temperatures increased. Manganese is released by aluminosilicate weathering, Ni and Co by pyrrhotite [Fe1−xS] oxidation, Zn and Cd by sphalerite oxidation, and Cu by chalcopyrite [CuFeS2] oxidation. No dissolved metals appear to have discrete secondary mineral controls. Changes in SO4, pH and metal concentrations indicate sulfide oxidation is occurring and effluent concentrations are influenced by ambient temperatures and, possibly, increasing flow path lengths that transport reaction products from previously unflushed waste rock.  相似文献   

7.
This study was conducted to assess the anthropogenic impact on metal concentrations in the bottom sediments of the Juam reservoir, Korea, and in stream sediments in its catchment, and to estimate the potential mobility of selected metals (Fe, Mn, Cu, Ni, Pb and Zn) using sequential extraction. A comparison of the metal concentrations in the stream sediments with mean background values in sediments collected from first- or second-order creeks shows that Pb, Cu and Ni are the most affected by anthropogenic inputs. The 206Pb/207Pb ratios of the bottom and core sediments (means: 1.2320 ± 0.0502 and 1.2212 ± 0.0040, respectively) suggest that Pb contamination is mainly due to the waste discharge of abandoned coal and metal mines rather than industrial and airborne sources. Considering the proportion of metals bound to the exchangeable, carbonate and reducible fractions, the comparative mobility of metals is suggested to decrease in the order Mn > Pb > Zn > Ni > Fe  Cu.  相似文献   

8.
《Applied Geochemistry》2006,21(6):1044-1063
A suite of trace metals was analyzed in water and sediment samples from the Blesbokspruit, a Ramsar certified riparian wetland, to assess the impact of mining on the sediment quality and the fate of trace metals in the environment. Limited mobility of trace metals was observed primarily because of their high partition coefficient in alkaline waters. Nickel was most mobile with a mean Kd of 103.28 L kg−1 whereas Zr was least mobile with a mean Kd of 105.47 L kg−1. The overall trace metal mobility sequence, derived for the Blesbokspruit, in increasing order, is: Zr < Cr < Pb < Ba < V < Cu < Zn < Sr < Mn < U < Mo < Co < Ni. Once removed from the solution, most trace metals were preferentially associated with the carbonate and Fe–Mn oxide fraction followed by the exchangeable fraction of the sediments. Organic C played a limited role in trace metal uptake. Only Cu was primarily associated with the organic fraction whereas Ti and Zr were mostly found in the residual fraction. Compared to their regional background, Au and Ag were most enriched, at times by a factor of 20–400, in the sediments. Significant enrichment of U, Hg, V, Cr, Co, Cu and Zn was also observed in the sediments.The calculated geoaccumulation indices suggest that the sediments are very lightly to lightly polluted with respect to most trace metals and highly polluted with respect to Au and Ag. The metal pollution index (MPI) for the 20 sampled sites varied between 2.9 and 45.7. The highest MPI values were found at sites that were close to tailings dams. Sediment eco-toxicity was quantified by calculating the sediment quality guideline index (SQG-I). The calculated SQG-I values (0.09–0.69) suggest that the sediments at the study area have low to moderate potential for eco-toxicity.  相似文献   

9.
《Applied Geochemistry》2005,20(5):973-987
Due to liming of acid mine drainage, a calcite–gypsum sludge with high concentrations of Zn (24,400 ± 6900 μg g−1), Cu (2840 ± 680 μg g−1) and Cd (59 ± 20 μg g−1) has formed in a flooded tailings impoundment at the Kristineberg mine site. The potential metal release from the sludge during resuspension events and in a long-term perspective was investigated by performing a shake flask test and sequential extraction of the sludge. The sequentially extracted carbonate and oxide fractions together contained ⩾97% of the total amount of Cd, Co, Cu, Ni, Pb and Zn in the sludge. The association of these metals with carbonates and oxides appears to result from sorption and/or coprecipitation reactions at the surfaces of calcite and Fe, Al and Mn oxyhydroxides forming in the impoundment. If stream water is diverted into the flooded impoundment, dissolution of calcite, gypsum and presumably also Al oxyhydroxides can be expected during resuspension events. In the shake flask test (performed at a pH of 7–9), remobilisation of Zn, Cu, Cd and Co from the sludge resulted in dissolved concentrations of these metals that were significantly lower than those predicted to result from dissolution of the carbonate fraction of the sludge. This may suggest that cationic Zn, Cu, Cd and Co remobilised from dissolving calcite, gypsum and Al oxyhydroxides were readsorbed onto Fe oxyhydroxides remaining stable under oxic conditions. In a long-term perspective (≳102 a), ⩾97% of the Cd, Co, Cu, Ni, Pb and Zn content of the sludge potentially is available for release by dissolution of calcite and reductive dissolution of Fe oxyhydroxides if the sludge is subject to a soil environment with lower dissolved Ca concentrations, pH and redox than in the impoundment.  相似文献   

10.
《Applied Geochemistry》1998,13(3):359-368
Studies on the speciation (particulate, colloidal, anionic and cationic forms) of trace metals (Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Zn) in the water column and in pore waters of the Gotland Deep following the 1993/94 salt-water inflows showed dramatic changes in the total “dissolved” metal concentrations and in the ratios between different metal species in the freshly re-oxygenated waters below 125 m. Changes in concentrations were greatest for those metals for which the solubility differs with the redox state (Fe, Mn, Co) but were also noted for those metals which form insoluble sulphides (Cd, Pb, Cu, Zn) and/or stable complexes with natural ligands (Cu). Pore water data from segmented surface muds (0–200 mm) indicated that significant redox and related metal speciation changes took place in the surface sediments only a few weeks after the inflow of the oxygenated sea water into the Gotland Deep.  相似文献   

11.
The Early Cambrian black shale sequence of the Niutitang Formation in South China hosts a synsedimentary, organic carbon-rich, polymetallic sulfide layer with extreme metal concentrations, locally mined as polymetallic Ni–Mo–PGE–Au ore. In combination with previously reported data, we present Mo isotope, platinum-group element (PGE), and trace and rare-earth element (REE) data for the polymetallic sulfide ores and host black shales from four mine sites (Dazhuliushui and Maluhe in Guizhou Province, and Sancha and Cili in Hunan Province, respectively), several hundred kilometers apart. The polymetallic sulfide ores have consistently heavy δ98/95Mo values of 0.94 to 1.38‰ (avg. 1.13 ± 0.14‰, 1σ, n = 11), and the host black shale and phosphorite have slightly more variable δ98/95Mo values of 0.81‰ to 1.70‰ (n = 14). This latter variation is due to variable paleoenvironmental conditions from suboxic to euxinic, and partly closed-system fractionation in isolated marine sedimentary basins. Both the polymetallic sulfides and host black shales show PGE distribution patterns similar to that of present-day seawater, but different from those of ancient submarine-hydrothermal deposits and modern submarine hydrothermal fluids. The polymetallic sulfide bed has a generally consistent metal enrichment by a factor of 107 compared to present-day seawater. PAAS-normalized REE + Y patterns of the polymetallic sulfide bed are characterized by a remarkably positive Y anomaly, consistent with an origin of the REE predominantly from seawater. Small positive Eu anomalies in some of the sulfide ores could reflect minor hydrothermal components involved. The Mo isotope, PGE, and trace and rare-earth element geochemical data suggest that metals in the polymetallic Ni–Mo–PGE–Au sulfide ore layer were scavenged mostly from Early Cambrian seawater, by both in-situ precipitation and local re-deposition of sulfide clasts.  相似文献   

12.
The partitioning of trace metal(oid)s between colloidal and “truly” dissolved fractions in sediment pore waters is often overlooked due to the analytical challenge; indeed, only small volumes are available and filtration membranes are rapidly clogged. Moreover, metal(oid)s are subject to co-precipitate with Fe. In this study, tangential flow filtration (TFF) was assessed for the fractionation of Fe, Mn, Cu, As, Co, Ni, Zn and Cd in sediment pore waters with a 5 kDa cut-off size membrane. Five natural sediments were collected and used for different tests. Results on blank samples showed that this technique was appropriate for Fe, Mn, Co, Zn, As and Cd. Although the applied concentration factors (CF) were low (<7.4) due to the small available volume of pore waters (50 mL), it was shown that colloidal concentrations obtained from the TFF procedure were similar whatever the applied concentration factor. The mass balance approach showed satisfying results (100 ± 25%) for Mn, Co, Zn and As. Mass balances were higher than 130% and highly variable for Cd, Ni and Cu. For Fe, mass balance was reproducible but low (71 ± 10%), probably due to sorption of positively charged Fe oxides on the membrane. Applying this method to five contrasting metal(oid)-contaminated sediments, it was shown that Mn, As, Co and Fe were mainly present in the “truly” dissolved phase (<5 kDa). This technique is a necessary step to assess sediment toxicity and bioavailability of metal(oid)s and could be of great interest for emergent pollutants such as nanometals.  相似文献   

13.
This study investigated the distribution and sources of Cd in soils from a Cd-rich area in the Three Gorges region, China. The results showed that in the study area arable soils contain 0.42–42 mg kg−1 Cd with 0.12–8.5 mg kg−1 in the natural soils, corresponding to high amounts of Cd (0.22–42 mg kg−1) in outcropping sedimentary rocks in the area. Both lognormal distribution and enrichment factor (EF) plots were applied in an attempt to distinguish between geogenic and anthropogenic origins of Cd in the local soils. The lognormal distribution plots illustrated that geogenic sources dominated in soils with low and moderate Cd concentrations (<8.5 mg kg−1), whereas anthropogenic sources (agricultural activities, coal mining) significantly elevated Cd contents in some arable soils (>8.5 mg kg−1). The enrichment factor plots illustrated that the majority of the soil samples had EF values of <5, pointing to a geogenic origin of Cd in the soils, whereas some arable soils had EF values >5, pointing to an additional anthropogenic input of Cd to the soils. Sequential extraction results showed that Cd soluble in water and weak acid (water-soluble, exchangeable and carbonate fraction of the soil) accounts for an average of 31% of the total soil Cd, which indicates high potential for Cd mobility and bioavailability. The findings point to a potential health risk from Cd in areas with high geogenic background concentrations of this metal.  相似文献   

14.
This study investigates the concentration and spatial distribution of Cu, Zn, Hg and Pb in the surface (0–2 cm) soils of a regional city in Australia. Surface soils were collected from road sides and analysed for their total Cu, Zn, Hg and Pb concentrations in the <180 μm and <2 mm grain size fractions. The average metal concentration of surface soils, relative to local background soils at 40–50 cm depth, are twice as enriched in Hg, more than three times enriched in Cu and Zn, and nearly six times as enriched in Pb. Median surface soil metal concentration values were Cu – 39 mg/kg (682 mg/kg max), Zn – 120 mg/kg (4950 mg/kg max), Hg – 44 μg/kg (14,900 μg/kg max) and Pb – 46 mg/kg (3490 mg/kg max). Five sites exceeded the Australian NEPC (1999) 300 mg/kg guideline for Pb in residential soils. Strong positive correlations between Cu, Zn and Pb, coupled with the spatial distribution of elevated soil concentrations towards the city centre and main roads suggest traffic and older housing as major sources of contamination. No spatial relationships were identified between elevated metal loadings and locations of past or present industries.  相似文献   

15.
《Applied Geochemistry》2006,21(10):1799-1817
Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, orginates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO4 is in the lower portion of the water column, with concentrations up to 8500 mg L−1 Fe, 20,000 mg L−1 SO4, 30 mg L−1 Zn, 100 mg L−1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes.  相似文献   

16.
《Applied Geochemistry》2006,21(8):1301-1321
Low-quality pore waters containing high concentrations of dissolved H+, SO4, and metals have been generated in the East Tailings Management Area at Lynn Lake, Manitoba, as a result of sulfide-mineral oxidation. To assess the abundance, distribution, and solid-phase associations of S, Fe, and trace metals, the tailings pore water was analyzed, and investigations of the geochemical and mineralogical characteristics of the tailings solids were completed. The results were used to delineate the mechanisms that control acid neutralization, metal release, and metal attenuation. Migration of the low-pH conditions through the vadose zone is limited by acid-neutralization reactions, resulting in the development of distinct pore-water pH zones at depth; the neutralization reactions involve carbonate (pH  5.7), Al-hydroxide (pH  4.0), and aluminosilicate solids. As the zone of low-pH pore water expands, the pH will then be primarily controlled by less soluble solids, such as Fe(III) oxyhydroxides (pH < 3.5) and the relatively more recalcitrant aluminosilicates (pH  1.3). Precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxides and hydroxysulfates control the concentrations of dissolved Fe(III). Concentrations of dissolved SO4 are principally controlled by the formation of gypsum and jarosite. Geochemical extractions indicate that the solid-phase concentrations of Ni, Co, and Zn are associated predominantly with reducible and acid-soluble fractions. The concentrations of dissolved trace metals are therefore primarily controlled by adsorption/complexation and (or) co-precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxide and hydroxysulfate minerals. Concentrations of dissolved metals with relatively low mobility, such as Cu, are also controlled by the precipitation of discrete minerals. Because the major proportion of metals is sequestered through adsorption and (or) co-precipitation, the metals are susceptible to remobilization if low-pH or reducing conditions develop within the tailings.  相似文献   

17.
The Bayan Obo Fe-REE-Nb deposit in northern China is the world's largest light REE deposit, and also contains considerable amounts of iron and niobium metals. Although there are numerous studies on the REE mineralization, the origin of the Fe mineralization is not well known. Laser ablation (LA) ICP-MS is used to obtain trace elements of Fe oxides in order to better understand the process involved in the formation of magnetite and hematite associated with the formation of the giant REE deposit. There are banded, disseminated and massive Fe ores with variable amounts of magnetite and hematite at Bayan Obo. Magnetite and hematite from the same ores show similar REE patterns and have similar Mg, Ti, V, Mn, Co, Ni, Zn, Ga, Sn, and Ba contents, indicating a similar origin. Magnetite grains from the banded ores have Al + Mn and Ti + V contents similar to those of banded iron formations (BIF), whereas those from the disseminated and massive ores have Al + Mn and Ti + V contents similar to those of skarn deposits and other types of magmatic-hydrothermal deposits. Magnetite grains from the banded ores with a major gangue mineral of barite have the highest REE contents and show slight moderate REE enrichment, whereas those from other types of ores show light REE enrichment, indicating two stages of REE mineralization associated with Fe mineralization. The Bayan Obo deposit had multiple sources for Fe and REEs. It is likely that sedimentary carbonates provided original REEs and were metasomatized by REE-rich hydrothermal fluids to form the giant REE deposit.  相似文献   

18.
The Tuwu porphyry Cu deposit in the eastern Tianshan Orogenic Belt of southern Central Oceanic Orogen Belt contains 557 Mt ores at an average grade of 0.58 wt.% Cu and 0.2 g/t Au, being the largest porphyry Cu deposit in NW China. The deposit is genetically related to dioritic and plagiogranitic porphyries that intruded the Carboniferous Qieshan Group. Ore minerals are dominantly chalcopyrite, pyrite and enargite. Porphyric diorites have Sr/Y and La/YbN ratios lower but Y and Yb contents higher than plagiogranites. Diorites have highly variable Cu but nearly constant PGE contents (most Pd = 0.50–1.98 ppb) with Cu/Pd ratios ranging from 10,900 to 8,900,000. Plagiogranites have PGEs that are positively correlated with Cu and have nearly uniform Cu/Pd ratios (5,100,000 to 7,800,000). Diorites have concentrations of Re (0.73–15.18 ppb), and 187Re/188Os and 187Os/188Os ratios lower but common Os contents (0.006–0.097 ppb) higher than plagiogranites. However, both the diorites and plagiogranites have similar normalized patterns of rare earth elements (REE), trace element and platinum-group elements (PGEs). All the samples are characterized by the enrichments of LREE relative to HREE and display positive anomalies of Pb and Sr but negative anomalies of Nb and Ta in primitive-mantle normalized patterns. In the primitive mantle-normalized siderophile element diagrams, they are similarly depleted in all PGEs but slightly enriched in Au relative to Cu.Our new dataset suggests that both the diorite and plagiogranite porphyries were likely evolved from magmas derived from partial melting of a wet mantle wedge. Their parental magmas may have had different water contents and redox states, possibly due to different retaining time in staging magma chambers at the depth, and thus different histories of magma differentiation. Parental magmas of the diorite porphyries are relatively reduced with less water contents so that they have experienced sulfide saturation before fractional crystallization of silicate minerals, whereas the relatively more oxidized parental magmas with higher water contents of the plagiogranite porphyries did not reach sulfide saturation until the magmatic-hydrothermal stage. Our PGE data also indicates that the Cu mineralization in the Tuwu deposit involved an early stage with the enrichments of Au, Mo and Re and a late stage with the enrichment of As but depletion of Au–Mo. After the formation of the Cu mineralization, meteoric water heated by magmas penetrated into and interacted with porphyritic rocks at Tuwu, which was responsible for leaching Re from hosting rocks.  相似文献   

19.
This study investigated Holocene and fossil hydrothermal manganese deposits in the Izu-Ogasawara arc. Mineralogically, these deposits comprise 10 Å and 7 Å manganate minerals, and the fossil samples showed higher 10 Å stabilities. Chemical compositions of the Holocene samples are typical of other hydrothermal manganese deposits, including low Fe/Mn ratios, low trace metals, and low rare earth elements. Although the fossil samples generally have similar chemical characteristics, they exhibit significant enrichment in Ni, Cu, Zn, Cd, Ba, REE, Tl, and Pb contents. Furthermore, the chondrite-normalized REE patterns showed more light REE enrichment trends. These chemical characteristics suggest post-depositional uptake of these metals from seawater. U-Th dating of a Holocene hydrothermal manganese deposit from the Kaikata Seamount indicated 8.8 ± 0.94 ka for the uppermost layer and downward growth beneath the seafloor with a growth rate of ca. 2 mm/kyr. This is approximately three orders of magnitude faster than that of hydrogenetic ferromanganese crusts. U-Pb age of a fossil hydrothermal manganese deposit from the Nishi-Jokyo Seamount showed 4.4 ± 1.6 Ma, which was contemporary with basaltic volcanism (5.8 ± 0.3 Ma). Hydrothermal manganese deposits contain high concentrations of high value Mn, but only small amounts of valuable minor metals; their ages constrain the periods of past hydrothermal activity and provide a vector to explore for polymetallic sulfide deposits.  相似文献   

20.
We first report the trace and rare earth element compositions of native sulfur ball with sulfur contents varying from 97.08 wt.% to 99.85 wt.% from the Kueishantao hydrothermal field, off NE Taiwan. We then discuss the sources of trace and rare earth elements incorporated into the native sulfur ball during formation. Comparison of our results with native sulfur from crater lakes and other volcanic areas shows the sulfur content of native sulfur ball from the Kueishantao hydrothermal field is very high, and that the rare earth element (REE) and trace element constituents of the native sulfur balls are very low (∑REE < 35 ppb). In the native sulfur ball, V, Cr, Co, Ni, Nb, Rb, Cs, Ba, Pb, Th, U, Al, Ti and REE are mostly derived from andesite; Mg, K and Mn are mostly derived from seawater; and Fe, Cu, Zn and Ni are partly derived from magma. Based on the sulfur contents, trace and rare earth element compositions, and local environment, we suggest that the growth of the native sulfur ball is significantly slower than that of native sulfur chimneys, which results in the relatively higher contents of trace and rare earth element contents in the native sulfur ball than in the native sulfur chimneys from the Kueishantao hydrothermal field. Finally, we suggest a “glue pudding” growth model for understanding the origin of the native sulfur ball in the Kueishantao hydrothermal field, whereby the native sulfur ball forms from a mixture of oxygenated seawater and acidic, low-temperature hydrothermal fluid with H2S and SO2 gases, and is subsequently shaped by tidal and/or bottom currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号