首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study of groundwater impact on the hydrochemical characteristic of groundwater within Mullusi aquifer, west Iraq was conducted using the chemical analysis results in 14 production wells and groundwater levels observation in 17 water wells. The interpretation of hydrochemical phenomena related to ions sources was determined based on spatial analysis maps of various hydrochemical ratios using ArcGis software. The study also determined the relation of groundwater velocity and static water levels with the hydrochemical ratios using statistical application of Curve expert v1.3 program. The variations of ion concentration were examined using the statistical significant differences for chemical constituents of water within Mullusi aquifer. The impact of dewatering due to high exploitation was explained by increasing the magnesium and chloride concentrations and lowering static water levels. Magnesium and chloride concentration may reach their maximum limits for drinking at a groundwater level of 485 m asl. Accordingly, any decline in the water level of Mullusi aquifer that occurs from 4.5 to 30.5 m may cause deterioration in groundwater quality. This study modeled the effect of groundwater depletion on the groundwater quality in a theoretical equations approach.  相似文献   

2.
The present work focuses on the evaluation of the groundwater quality by chemical and bacteriological analyses to ensure its suitability for drinking and irrigation. Twenty groundwater samples were collected and analyzed from Manfalut district, Assiut, Egypt. Several water quality parameters were determined; the results show higher concentration of total dissolved solids (50 %), electrical conductivity (55 %), chloride (20 %), total hardness (20 %), and bicarbonate (55 %). This indicates signs of deterioration regarding drinking and domestic uses. Salinity hazard, sodium absorption ratio, sodium (Na) percentage, and residual Na carbonate were used to evaluate groundwater quality for irrigation. The values of electrical conductivity and SAR of groundwater samples were estimated illustrating that the most dominant classes are C2S1 (45 %; medium-salinity-low SAR), C3S1 (50 %; high-salinity-low SAR), and C4S1 (5 %; very high-salinity-low SAR). Bacteriological analysis was also conducted for 20 groundwater wells from December 2011 to May 2012. Seven samples (35 %) are contaminated by bacteria (total and fecal coliforms); these wells are not suitable for drinking. The analysis exhibits that bacterial contamination was the maximum in wells located at the center of the study area; this may be due to using the residential septic tanks. It was also discovered that the quality of groundwater is suitable for irrigation in the target aquifer except in a few locations. As for drinking, about 55 % of the samples are not suitable. However, the groundwater wells which are located in the center of the study area are suitable for drinking according to the hydochemical analysis. It was found that some of these wells are not suitable based on bacteriological analysis.  相似文献   

3.
An integrated approach was used to evaluate the impact of flash flood recharge on groundwater quality and its suitability for drinking, irrigation, livestock and poultry uses in the Wadi Baysh Basin, Western Saudi Arabia. Analyses of 182 groundwater samples, collected from the study area before and after a flash flood (FF) event, show that the average concentrations of TDS, Mg, Na, Cl, NO3 and EC decreased significantly after the event. The major water types (mixed CaMgCl, NaCl and CaCl) indicate that the infiltration of surface water from FF recharge has a great influence on groundwater chemistry. Drinking water suitability maps, created using WHO standards, indicate that wells located in the upstream region are suitable for drinking despite their high TDS and total hardness (TH) values. Groundwater in the coastal region is unsuitable due to its high salinity, high TH and high concentrations of major ions. The suitability of groundwater for irrigational use was assessed using salinity, sodium adsorption ratio, bicarbonate hazard, residual sodium carbonate, Kelly’s ratio, magnesium hazard, sodium percentage and permeability index values, which indicated that groundwater in the study region is suitable for most soils and crops. After FF, groundwater quality is improved by dilution, especially in the downstream region. USSL classification shows that the majority of the water samples are in the C3S1, C4S2, and C3S2 classes and are therefore suitable for the irrigation of salt-tolerant crops. Irrigational suitability maps suggest that wells in the upstream region are suitable for irrigation, whereas wells located near to the coast are unfit for irrigation. This study implies that construction of check dams in the dry valleys (wadies) may improve the groundwater quality in the area.  相似文献   

4.
Assessment of possible sources that control the groundwater quality was carried out in the Cauvery deltaic region, India, since domestic and agricultural water requirements are largely met by groundwater abstraction. Major ion and bromide contents are high in groundwater in the coastal wells. Spatial and vertical distributions of ions reveal that the shallow wells and wells in coastal parts have high chloride, nitrate, ammonium and phosphate. Groundwater quality assessment was carried out using the prescribed limits of World Health Organization and Bureau of Indian Standards which indicates that 55 % of samples are not fit for drinking. Integrated suitability map for drinking was created based on the concept that if the water sample exceeds any one of the standards by World Health Organization or Bureau of Indian Standards, the well is not fit for drinking. Groundwater quality for agricultural activities was assessed using electrical conductivity, sodium adsorption ratio, residual sodium carbonate, United States salinity laboratory diagram and Food and Agricultural Organization methods. According to Food and Agricultural Organization, 84 % of samples are classified as low sodium water and are suitable for all crops and soils. It was found that the water quality in this area is affected by improper disposal of waste, sewage/drainage canals near the wells, irrigation return flow, application of agrochemicals and saline water intrusion in the coastal region. Further, integrated suitability map produced in this study will be useful for future groundwater development and planning in this area. The suitability map needs to be updated periodically for proper management plan to preserve the groundwater resource in this region.  相似文献   

5.
Groundwater in Farashband plain, Southern Iran, is the main source of water for domestic and agricultural uses. This study was carried out to assess the overall water quality and identify major variables affecting the groundwater quality in Farashband plain. The hydrochemical study was undertaken by randomly collecting 84 groundwater samples from observation wells located in 13 different stations covering the entire plain in order to assess the quality of the groundwater through analysis of major ions. The water samples were analyzed for various physicochemical attributes. Groundwater is slightly alkaline and largely varies in chemical composition; e.g., electrical conductivity (EC) ranges from 2314 to 12,678 μS/cm. All the samples have total dissolved solid values above the desirable limit and belong to a very hard type. The abundance of the major ions is as follows: Na+ > Ca2+ > Ma2+ > K+ and Cl? > SO4 2– > HCO3 ?. Interpretation of analytical data shows three major hydrochemical facies (Ca–Cl, Na–Cl, and mixed Ca–Mg–Cl) in the study area. Salinity, total dissolved solids, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purposes. Based on the US salinity diagram, most of samples belong to high salinity and low to very high sodium type.  相似文献   

6.
The multilayered Djeffara aquifer system, south-eastern Tunisia, has been intensively used as a primary source to meet the growing needs of the various sectors (drinking, agricultural and industrial purposes). The analysis of groundwater chemical characteristics provides much important information useful in water resources management. Detailed knowledge of the geochemical evolution of groundwater and assessing the water quality status for special use are the main objective of any water monitoring study. An attempt has been made for the first time in this region to characterize aquifer behavior and appreciate the quality and/or the suitability of groundwater for drinking and irrigation purposes. In order to attend this objective, a total of 54 groundwater samples were collected and analyzed during January 2008 for the major cations (sodium, calcium, magnesium and potassium), anions (chloride, sulfate, bicarbonate), trace elements (boron, strontium and fluoride), and physicochemical parameters (temperature, pH, total dissolved salts and electrical conductivity). The evolution of chemical composition of groundwater from recharge areas to discharge areas is characterized by increasing sodium, chloride and sulfate contents as a result of leaching of evaporite rock. In this study, three distinct chemical trends in groundwater were identified. The major reactions responsible for the chemical evolution of groundwater in the investigated area fall into three categories: (1) calcite precipitation, (2) gypsum and halite dissolution, and (3) ion exchange. Based on the physicochemical analyses, irrigation quality parameters such as sodium absorption ratio (SAR), percentage of sodium, residual sodium carbonate, residual sodium bicarbonate, and permeability index (PI) were calculated. In addition, groundwater quality maps were elabortaed using the geographic information system to delineate spatial variation in physico-chemical characteristics of the groundwater samples. The integration of various dataset indicates that the groundwater of the Djeffara aquifers of the northern Gabes is generally very hard, brackish and high to very high saline and alkaline in nature. The water suitability for drinking and irrigation purposes was evaluated by comparing the values of different water quality parameters with World Health Organization (WHO) guideline values for drinking water. Piper trilinear diagram was constructed to identify groundwater groups where the relative major anionic and cationic concentrations are expressed in percentage of the milliequivalent per liter (meq/l), and it was demonstrated that the majority of the samples belongs to SO4–Cl–Ca–Na, Cl–SO4–Na–Ca and Na–Cl hydrochemical facies. As a whole, all the analyzed waters from this groundwater have revealed that this water is unsuitable for drinking purposes when comparing to the drinking water standards. Salinity, high electric conductivity, sodium adsorption ratio and sodium percentages indicate that most of the groundwater samples are inappropriate for irrigation. The SAR vary from medium (S2) to very high (S4) sodicity. Therefore, the water of the Djeffara aquifers of the northern Gabes is dominantly of the C4–S2 class representing 61.23 % of the total wells followed by C4–S3 and C4–S4 classes at 27.27 and 11.5 % of the wells, respectively. Based on the US Salinity Classification, most of the groundwater is unsuitable for irrigation due to its high salt content, unless certain measures for salinity control are undertaken.  相似文献   

7.
The continuous increase of industrial activities in the area of Berrahal (northeast of Algeria) resulted in an increase of waste disposal, inducing environmental pollution and contamination of groundwater. Available data on groundwater contamination were used to develop a statistical study for contaminated regions and to identify exposure scenarios of pollution. Chemical analysis of the samples shows that water of most wells and drillings is in bad quality or not drinkable, whereas statistical processing of these data by principal component analysis and discriminant factorial analysis suggests that wastewater coming from companies of the industrial park of Berrahal is very rich in organic pollutants (high percentages of BOD5 and NO2 ?) and has high mineralization (has strong concentration in major elements and high electric conductivity); these constitute the main factors of the deterioration of the quality of this water. The considered exposure pathways were drinking water exploited from wells and drillings implanted in this area and its contact with soil (ingestion and dermal contact) that could threaten either humans or wildlife, on site or off site. In addition, groundwater was considered to be a potential risk pathway, especially for the ecosystem of Lake Fetzara and for the aquiferous system.  相似文献   

8.
北京西南城近郊浅层地下水盐污染特征及机理分析   总被引:27,自引:0,他引:27  
北京市西南城近郊是本市高硬度水主要分布区,也是北京平原区地下水主要补给区,浅层地下水水质恶化已成为影响本区经济发展的主要因素。本文通过对区内14个长期观测孔11a来水质资料的统计分析,从统计学和水化学角度分析了本区浅层地下水盐污染特征和机理。结果说明,盐污染主要是硬度升高和硝酸盐污染,而在时间和空间分布上的不均匀性,显示出污染源、污染途径及污染机理的复杂性。最主要的污染原因有:独特的水文地质条件,污灌,砂石坑垃圾回填,及区域地下水位下降。  相似文献   

9.
10.
Shallow renewable groundwater sources have been used to satisfy the domestic needs and the irrigation in many parts of Saudi Arabia. Increased demand for water resulting from accelerated development activities has placed excess stress on the renewable sources especially in coastal aquifers of the western region of Saudi Arabia. It is expected that the current and future development activities will increase the rate of groundwater mining of the coastal aquifer near the major city Jeddah and surrounding communities unless management measures are implemented. The current groundwater development of Dahaban coastal aquifer located at alluvial fan at the confluence of three major Wadis is depleting the shallow renewable groundwater sources and causes deterioration of its quality. Numerical models are known tools to evaluate groundwater management scenarios under a variety of development options under different hydrogeological regimes. In this study, two models are applied—the MODFLOW for evaluating the hydrodynamic behaviors of the aquifer and MT3D salinity distribution to the costal aquifer near Dahaban town. The models’ simulation evaluates two development scenarios—the impact of excessive abstraction and the water salinity variation keeping abstraction at its current or increases in levels with or without groundwater recharge taking place. The simulation evaluated two scenarios covering a 25-year period—keeping the current abstraction at its current and the other scenario is increasing the well abstraction by 50% for dry condition (no recharge) and wet condition (with recharge). The analysis reveals that, under the first scenario, the continuation of the current pumping rates will result in depletion of the aquifer resulting in drying of many wells and quality deterioration at the level of 2,500 ppm. The results are associated with the corresponding salinity distribution in the region. Simulation of salinity in the region is a density-independent problem as salt concentration does not exceed 2,000 ppm, which is little value compared with sea salinity that amounts to 40,000 ppm. It is not recommended to increase the pumping rate than the current values. However, for the purpose of increasing water resources in the region, it is recommended to install new wells in virgin zones west of Dahaban main road. Maps of high/low potential groundwater and maps of salinity zones (more or less than 1,000 ppm) are provided and could be used to identify zones of high groundwater potential for the four studied scenarios. The implemented numerical simulation of Dahaban aquifer was undertaken to assess the water resources potential in order to reduce the depletion of sources in the future.  相似文献   

11.
Assessment of groundwater quality is an important aspect of water security, which is the key to ensure sustainable development. The objective of the study is to bring out an integrated approach for assessment of groundwater quality for drinking and irrigation purposes. Gogi region, Karnataka, India was chosen as the study area due to the effect of the presence of medium-grade uranium deposits. An integrated approach including the concentration of major ions, trace elements and uranium was employed to investigate the quality of groundwater. Totally, 367 groundwater samples were collected periodically from 52 wells distributes over the Gogi region and the parameters such as pH, electrical conductivity, total dissolved solids (TDS), Ca2+, Mg2+, Na+, K+, Cl?, SO4 2?, NO3 ?, Zn, Pb, Cu, and uranium of groundwater were analysed. Spatial distribution maps of various chemical constituents were prepared using geographic information system and its temporal variation was plotted in box and whisker plot. The analytical data were compared with Bureau of Indian Standards and World Health Organisation standards to determine drinking water quality and parameters such as salinity hazard, alkalinity hazard and percent sodium were estimated to assess the irrigation quality. Multivariate statistical analysis by cluster analysis was also performed which results in two groups consisting of wells with unsuitable water for drinking purposes. Groundwater in about 15% of the sampling wells were found to be unsuitable for domestic purpose based on TDS and about 17% were unsuitable based on uranium concentration. Finally, integration of spatial variation in TDS and uranium reveals that about 25% of the wells were unsuitable for domestic purposes. It is suggested that such an integrated approach needs to be formulated considering major ions, trace elements and radioactive elements for proper assessment of water quality. Implementation of managed aquifer recharge structures in the study area is suggested since it would potentially reduce the concentration of ions.  相似文献   

12.
The Cihanbeyli basin is located in the northern part of Konya in the Central Anatolian region, Turkey and is characterized by semi-arid climatic conditions and scarcity in water resources. The suitability of groundwater quality for drinking and agricultural purposes in the Cihanbeyli basin was assessed by measuring physicochemical parameters, including major cation and anion compositions, pH, total dissolved solid, electrical conductivity, and total hardness. For this purpose, 54 samples were collected from different sources viz. deep wells, shallow wells, and springs. Results from hydrochemical analyses reveal that groundwater is mostly affected by salty and gypsiferous lithologies. Evaporite minerals such as gypsum, anhydrite, and chloride salts make high contributions from the recharge areas (west, northwest, and southwest parts) toward the discharge area (central and eastern parts). High values of total dissolved solids in groundwater are associated with high concentrations of all major ions. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking. Based on sodium absorption ratio values and percent sodium, salinity appears to be responsible for the poor groundwater quality, rendering most of the samples unsuitable for irrigation usage. It is concluded that evaporation and mineral dissolution are the main processes that determine major ion compositions.  相似文献   

13.
Geochemical and isotopic characterization of groundwater and lake-water samples were combined with water and total dissolved solids balances to evaluate sources of groundwater quality deterioration in eastern Hetao Basin, Inner Mongolia, China. Groundwater quality is poor; 11 of 13 wells exceed drinking-water guidelines for at least one health-based parameter and all wells exceed aesthetic guidelines. The well water is largely derived from Yellow River irrigation water. Notably high uranium concentrations in the Yellow River, relative to world rivers, suggest groundwater uranium and other trace elements may originate in the river-derived irrigation water. Complex hydrostratigraphy and spatial variation in groundwater recharge result in spatially complex groundwater flow and geochemistry. Evapotranspiration of irrigation water causes chloride concentration increases of up to two orders of magnitude in the basin, notably in shallow groundwater around Wuliangsuhai Lake. In addition to evapotranspiration, groundwater quality is affected by mineral precipitation and dissolution, silicate weathering, and redox processes. The lake-water and TDS balances suggest that a small amount of discharge to groundwater (but associated with very high solute concentrations) contributes to groundwater salinization in this region. Increasing salinity in the groundwater and Wuliangsuhai Lake will continue to deteriorate water quality unless irrigation management practices improve.  相似文献   

14.
Panvel Basin of Raigarh district, Maharashtra, India is the study area for groundwater quality mapping using the Geographic Information System (GIS). The study area is typically covered by Deccan basaltic rock types of Cretaceous to Eocene age. Though the basin receives heavy rainfall, it frequently faces water scarcity problems as well as water quality problems in some specific areas. Hence, a GIS based groundwater quality mapping has been carried out in the region with the help of data generated from chemical analysis of water samples collected from the basin. Groundwater samples show quality exceedence in terms of chloride, hardness, TDS and salinity. These parameters indicate the level of quality of groundwater for drinking and irrigation purposes. Idrisi 32 GIS software was used for generation of various thematic maps and for spatial analysis and integration to produce the final groundwater quality map. The groundwater quality map shows fragments pictorially representing groundwater zones that are desirable and undesirable for drinking and irrigation purposes.  相似文献   

15.
Assessment of surface water and groundwater quality is necessary as it controls their usability for drinking and irrigation purposes. This study was carried out to assess the suitability of groundwater for these purposes and to understand the impact of water stored in a check dam on groundwater quality near Chennai, Tamil Nadu, India. Water samples were collected from a check dam across Arani River and 13 nearby wells during October 2010, January 2011, and April 2011. These samples were analyzed for pH, electrical conductivity (EC), and calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, and sulfate concentrations. The World Health Organization and the Bureau of Indian Standards guidelines were used to assess the suitability of groundwater for the purpose of drinking. Suitability of water for irrigation was determined based on the EC, sodium adsorption ratio, US Salinity Laboratory diagram, percentage sodium, Wilcox’s diagram, Kelly’s index, and Doneen’s permeability index. About 38 % of the groundwater samples were suitable for drinking and 70 % were suitable for irrigational use. Water stored in the check dam and groundwater in the wells closer to the structure were suitable for both drinking and irrigation purposes. The study confirms that the check dam in this area improves the groundwater quality in its surroundings.  相似文献   

16.
Groundwater is considered as one of the most important sources for water supply in Iran. The Fasa Plain in Fars Province, Southern Iran is one of the major areas of wheat production using groundwater for irrigation. A large population also uses local groundwater for drinking purposes. Therefore, in this study, this plain was selected to assess the spatial variability of groundwater quality and also to identify main parameters affecting the water quality using multivariate statistical techniques such as Cluster Analysis (CA), Discriminant Analysis (DA), and Principal Component Analysis (PCA). Water quality data was monitored at 22 different wells, for five years (2009-2014) with 10 water quality parameters. By using cluster analysis, the sampling wells were grouped into two clusters with distinct water qualities at different locations. The Lasso Discriminant Analysis (LDA) technique was used to assess the spatial variability of water quality. Based on the results, all of the variables except sodium absorption ratio (SAR) are effective in the LDA model with all variables affording 92.80% correct assignation to discriminate between the clusters from the primary 10 variables. Principal component (PC) analysis and factor analysis reduced the complex data matrix into two main components, accounting for more than 95.93% of the total variance. The first PC contained the parameters of TH, Ca2+, and Mg2+. Therefore, the first dominant factor was hardness. In the second PC, Cl-, SAR, and Na+ were the dominant parameters, which may indicate salinity. The originally acquired factors illustrate natural (existence of geological formations) and anthropogenic (improper disposal of domestic and agricultural wastes) factors which affect the groundwater quality.  相似文献   

17.
Intensive agriculture by indiscriminate use of agrochemicals, sewage water, and polluted drain water has posed a serious threat to groundwater quality in some peri-urban areas of Delhi like Najafgarh block. The objective of the study was to determine the groundwater quality and to map their spatial variation in terms of suitability for irrigation and drinking purpose. Ordinary kriging method was used for preparation of thematic maps of groundwater quality parameters such as electrical conductivity, sodium adsorption ratio, bicarbonate, magnesium/calcium ratio, total dissolved solids, chloride, nitrate and hardness. Exponential semivariogram model was best fitted for all quality parameters except chloride and hardness, where spherical model fitted best. Pollution level was highest at south and south-eastern part of the study area. Better quality groundwater may be expected at the northern and western part. High salinity was due to high chloride concentration in the groundwater. Nitrate pollution level was found to be very alarming and need immediate interventions. High dissolved solids and hardness made the groundwater unsuitable for drinking. There were negligible sodium and bicarbonate hazard in the study area. The groundwater quality index was devised to analyse the combined impact of different quality parameters on irrigation and drinking purposes. The irrigation water quality index and drinking water quality index distribution maps delineated an area of 47.29 and 6.54 km2 suitable for irrigation and drinking, respectively. These safe zones were found as a small strip along the northern boundary and a very small pocket at the western side of the study area.  相似文献   

18.
太湖流域经济发达,人口稠密,如管理不善将引发水污染严重、水环境恶化和水质型缺水等水问题,对饮用水安全构成威胁。因此,地下水在保障太湖流域饮用水安全中的作用就显得特别重要,提出了太湖流域地下水保护的对策措施。  相似文献   

19.
Seawater flows towards the inlands along with the rivers and canals, through the process of infiltration and leaks in the ground water characterized by high concentrations of soluble salts. High salinity concentrations can make groundwater unsuitable for public consumption and surface water unsuitable for irrigation and agricultural activities. This study envisages the fluctuations of ground and surface water quality of Bentota area in the presence of seawater intrusion. The temporal and spatial variations of eleven water parameters were monitored by collecting the water samples during one year period. Spatial distributions were assessed by applying the Inverse distance weighted (IDW) interpolation method in Arc GIS 10.5 software. Water quality is assessed on the integration of all parameters in terms of an index based on the World Health Organization (WHO) standards. The significant linear relationship between the considered parameters of surface water (SW) and groundwater (GW) were identified applying correlation analysis using SPSS software. All parameters of surface water were above the permissible limits of WHO standards. Surface water quality index values with respect to 60% of canals show very poor quality (>1 250) of surface water indicating their unsuitability for irrigation activities. Those surface water bodies indicated very highly saline conditions during dry months. The spatial distribution of ground water quality index with respect to the highest parameter values of each sampling location indicates that 52.2% of total land extent of Bentota Divisional Secretariat Division (DSD) has good quality of ground water which is suitable for drinking. Its 47.2% of total land extent has poor quality of ground water for drinking purpose and less than 0.5% of the area consists of excellent or very poor quality of ground water in each. This study helps to manage coastal aquifers by understanding the extreme water quality conditions and coastal salinity.  相似文献   

20.
Review: Safe and sustainable groundwater supply in China   总被引:1,自引:0,他引:1  
Exploitation of groundwater has greatly increased since the 1970s to meet the increased water demand due to fast economic development in China. Correspondingly, the regional groundwater level has declined substantially in many areas of China. Water sources are scarce in northern and northwestern China, and the anthropogenic pollution of groundwater has worsened the situation. Groundwater containing high concentrations of geogenic arsenic, fluoride, iodine, and salinity is widely distributed across China, which has negatively affected safe supply of water for drinking and other purposes. In addition to anthropogenic contamination, the interactions between surface water and groundwater, including seawater intrusion, have caused deterioration of groundwater quality. The ecosystem and geo-environment have been severely affected by the depletion of groundwater resources. Land subsidence due to excessive groundwater withdrawal has been observed in more than 50 cities in China, with a maximum accumulated subsidence of 2–3 m. Groundwater-dependent ecosystems are being degraded due to changes in the water table or poor groundwater quality. This paper reviews these changes in China, which have occurred under the impact of rapid economic development. The effects of economic growth on groundwater systems should be monitored, understood and predicted to better protect and manage groundwater resources for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号