首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王道德  王桂琴 《矿物学报》2012,32(3):321-340
陨石是来自含气体-尘粒的太阳早期星云盘凝聚和吸积的原始物质,大多数原始物质因吸积后的作用过程而改变(如月球、地球及火星样品),但有一些却完整的保存下来(如球粒陨石或球粒陨石中的难熔包体)。这些原始的物质通常依据同位素丰度特征来识别,依据其矿物-岩石学特征和成因可将已知的陨石划分许多更小的类型。陨石学及天体化学的新近进展包括:新近识别的陨石群;发现新类型球粒陨石及行星际尘粒中发现前太阳和星云组分;利用短寿命放射性核素完善了早期太阳系年代学;洞察宇宙化学丰度、分馏作用及星云源区及通过次生母体的作用过程阐释星云和前星云的记录。本文概述了早期太阳系内从星云到陨石的演化过程。依据这些资料,对早期太阳系所经历的多种核合成的输入、瞬时加热事件与星云动力学有一些新的认识,以及认识到小星子和行星体系的演化比以前预期的更快速。  相似文献   

2.
陨石氧同位素组成及其地学意义   总被引:1,自引:0,他引:1  
介绍了各类陨石氧同位素组成的特点,对陨石氧同位素组成的主要成因观点进行了评述,结合地球的原始物质组成,讨论了陨石氧同位素组成的地球科学意义。  相似文献   

3.
All chondrites accreted ∼3.5 wt.% C in their matrices, the bulk of which was in a macromolecular solvent and acid insoluble organic material (IOM). Similar material to IOM is found in interplanetary dust particles (IDPs) and comets. The IOM accounts for almost all of the C and N in chondrites, and a significant fraction of the H. Chondrites and, to a lesser extent, comets were probably the major sources of volatiles for the Earth and the other terrestrial planets. Hence, IOM was both the major source of Earth’s volatiles and a potential source of complex prebiotic molecules.Large enrichments in D and 15N, relative to the bulk solar isotopic compositions, suggest that IOM or its precursors formed in very cold, radiation-rich environments. Whether these environments were in the interstellar medium (ISM) or the outer Solar System is unresolved. Nevertheless, the elemental and isotopic compositions and functional group chemistry of IOM provide important clues to the origin(s) of organic matter in protoplanetary disks. IOM is modified relatively easily by thermal and aqueous processes, so that it can also be used to constrain the conditions in the solar nebula prior to chondrite accretion and the conditions in the chondrite parent bodies after accretion.Here we review what is known about the abundances, compositions and physical nature of IOM in the most primitive chondrites. We also discuss how the IOM has been modified by thermal metamorphism and aqueous alteration in the chondrite parent bodies, and how these changes may be used both as petrologic indicators of the intensity of parent body processing and as tools for classification. Finally, we critically assess the various proposed mechanisms for the formation of IOM in the ISM or Solar System.  相似文献   

4.
A coordinated mineralogical and oxygen isotopic study of four fine-grained calcium-, aluminum-rich inclusions (CAIs) from the ALHA77307 CO3.0 carbonaceous chondrite was conducted. Three of the inclusions studied, 05, 1-65, and 2-119, all have nodular structures that represent three major groups, melilite-rich, spinel-rich, and hibonite-rich, based on their primary core mineral assemblages. A condensation origin was inferred for these CAIs. However, the difference in their primary core mineralogy reflects unique nebular environments in which multiple gas-solid reactions occurred under disequilibrium conditions to form hibonite, spinel, and melilite with minor perovskite and Al,Ti-rich diopside. A common occurrence of a diopside rim on the CAIs records a widespread event that marks the end of their condensation as a result of isolation from a nebular gas. An exception is a rare inclusion 2-112 that contains euhedral spinel crystals embedded in melilite, suggesting this CAI had been re-melted. All of the fine-grained CAIs analyzed in ALHA77307 are 16O-rich with an average Δ17O value of ∼−22 ± 5‰ (2σ), indicating no apparent correlation between their textures and oxygen isotopic compositions. We therefore conclude that a prevalent 16O-rich gas reservoir existed in a region of the solar nebula where CO3 fine-grained CAIs formed, initially by condensation and then later, some of them were reprocessed by melting event(s).  相似文献   

5.
A previously published estimate of the oxygen isotopic composition of the gas of the early solar nebula must be revised in light of the discovery of non-chemical isotope effects in carbonaceous chondrites. The solids which accreted to form the Earth, Moon and ordinary chondrites probably did not equilibrate isotopically with the gas below 1000 K.  相似文献   

6.
富钙长石-橄榄石包体与其他部分典型包体W-L边的成因   总被引:1,自引:1,他引:0  
球粒陨石中的富Ca、Al包体(简称CAI)形成于星云演化的最初始阶段,保存了大量星云形成和演化的各种信息。研究认为,包体的成因主要包括星云直接凝聚和熔融结晶,少部分甚至经历过高温蒸发过程。部分CAI最外层具有由一种或几种矿物组成的Warking-Lovering边(简称为W-L边),CAI和其W-L边对于认识早期星云环境和界定CAI的形成时间等均具有重要意义。目前,对于W-L边的形成过程研究并不深入,且一直存在争议。本文主要介绍了三个典型包体:C#1(富钙长石-橄榄石包体)、GRV 022459-2RI5(A型包体)和GRV 021579-3RI5(富尖晶石球粒状包体)及其W-L边的矿物岩石学和氧同位素组成特征。C#1包体明显经历过熔融结晶过程,W-L边氧同位素组成具有与包体内部矿物相似的富~(16)O同位素特征,表明W-L边的成因与包体的形成过程密切相关,形成于同一富~(16)O同位素组成区域,且W-L边属于包体熔融结晶过程后期的产物。矿物岩石学特征表明,GRV 022459-2RI5属于星云直接凝聚形成,其W-L边为包体形成过程最晚期星云凝聚产物。GRV021579-3RI5经历过熔融结晶过程,其W-L边为包体结晶最后阶段的产物。  相似文献   

7.
We present Ca isotopic measurements on Allende Ca-Al-rich inclusions (CAIs) and an apatite enriched fraction from Orgueil. The results on CAIs show widespread excesses on the neutron-rich isotope 48Ca. All other isotopes agree with the normal within our presently obtainable precision. Seven out of 11 CAIs analyzed exhibit isotopic anomalies ranging up to ~ +6? units (1? = 1 part in 10,000). This abundant occurrence of isotopic excesses places Ca alongside Ti and O, elements which show isotopic anomalies in all Allende CAIs measured so far. However, at present no clear correlation can be found between excesses in 48Ca and 50Ti, the isotopes which are thought to be coproduced by neutron-rich nucleosynthetic processes within stars. We believe that the relatively higher volatility of Ca compared to Ti compounds could have led to a variable dilution with isotopically “normal” Ca in vaporization and recondensation processes in stellar envelopes, the interstellar medium and/or the solar nebula. High precision measurements of 46Ca limit possible anomalies in this 33 ppm abundance isotope to 10? units or less and, together with the observed 48Ca and 50Ti anomalies, constrain possible nucleosynthetic mechanisms capable of producing these neutron-rich nuclei.  相似文献   

8.
The data available show that some Antarctic carbonaceous chondrites are similar to Cl meteorites.Tehy contain a lot of phyllosilicate aggregates and the oxygen isotopic composition of the whole-rock samples is approximate to that of C1 chondrites,so they are named after quasi-C1(Q-C1)chondrites Unlike Cl metcorites,the Q-Cl chondites possess chondrule structrue,and the compositions of hih temperature condensates(chondrule fragments,mineral grains or aggregates)show that the oxygen fugacity varied within a wide range in the surroundings where they were formed,similar to the variation range from E.H.L,LL to C group chondrites.It is inferred that the Q-C1 chondrites could be formed at the edges far from the equator in the whole asteroid region of the solar nebular disk.where the nebula was lower in density and the condensates were lower in accretion velocity,so that the hydration of chon drules and matrix occurred during the late stage of nebular condensation.The discovery of the Q-Cl chondrites and the fact that the earth and other terrestrial planets contain water indicate that at the edges far from the equator in the terrestrial reigion of the solar nebular disk,a large amount of water was incorporated into the lattice of minerals in the condensates as a result of hydration during nebular condensation,and then found its way into the interior parts of the Earth and other terrestrial planets due to accretion.  相似文献   

9.
《Geochimica et cosmochimica acta》1999,63(13-14):2089-2104
The carbonaceous chondrites display the widest range of oxygen isotopic composition of any meteorite group, as a consequence of the interaction of primordial isotopic reservoirs in the solar nebula. These isotopic variations can be used to identify the reservoirs and to determine conditions and loci of their interactions. We present a comprehensive set of whole-rock analyses of CV, CO, CK, CM, CR, CH, and CI chondrites, as well as selected components of some of these meteorites. A simple model is developed which describes the isotopic behavior during parent-body aqueous alteration processes. The process of thermal dehydration also produces a recognizable effect in the oxygen isotopic composition.  相似文献   

10.
侯渭  欧阳自远 《岩石学报》1996,12(1):115-126
建立类地行星区太阳星云凝聚过程的岩石学模型,对于合理解释陨石、地球和类地行星的成因关系,探讨地球起源和估算地球的整体成分都有着重要意义。本文中根据天体化学和太阳系演化学说关于太阳星云物理化学条件的基本分析,以及实验凝聚岩石学的研究结果,推断在太阳星云盘的类地行星区中可能有星云的气-固和气-液-固两种凝聚作用发生。通过对球粒陨石中球粒和基质矿物成分及结构构造特征的对比,论证了绝大多数球粒的气-液-固凝聚成因和基质的气-固凝聚成因,并讨论了球粒陨石各化学群的凝聚成因模式。  相似文献   

11.
From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation.We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the chemical compositions of GEMS grains are extremely heterogeneous and seem to rule out this possibility. Based on their solar isotopic compositions and their non-solar elemental compositions we propose that most GEMS grains formed in the nebula as late-stage non-equilibrium condensates.  相似文献   

12.
We report high precision sulfur isotopic data obtained by sequential extraction from various physically separated phases (bulk, matrix, and chondrules) from chondrites. A significant excess of 33S (up to Δ33S of 0.112‰ for Dhajala Chondrule) has been observed and is most likely carried by chondrule rims, though chondrule interiors cannot be ruled out as a carrier. Stellar nucleosynthesis and spallation are ruled out as a cause for this anomaly. Photochemical irradiation of sulfur gaseous species in the early solar nebula has, most likely, produced this anomaly. Observations of mass independent sulfur of photochemical origin suggest that chondrules and their rims must have formed in an optically thin nebular region. This also suggests that the chondrules were formed near the protoSun when it was active in ultraviolet light emission.  相似文献   

13.
Textural and chemical features of five coarse-grained, calcium-aluminum-rich inclusions from the Allende meteorite indicate that some of the melilite in these inclusions was formed by a secondary metamorphic event and not by primary crystallization from a melt or by a sequential nebular condensation process. These inclusions contain embayed pyroxene surrounded by melilite. Physically separated pyroxene crystals are often in optical continuity indicating that they were once part of larger single crystals that have been partly replaced by melilite. Other evidences of metamorphism include reaction textures between melilite and spinel, and metamorphic textures such as kink-band-like features, lobate sutured grain boundaries, and 120° triple-points. This type of metamorphic process requires the addition of Ca which we propose came from calcite or by introduction of a fluid phase. We believe that the most likely environment for this metamorphic process is on a small planetary body, and not in the solar nebula. The results of this study are compatible with oxygen isotopic heterogeneities within CAI, and provide a mechanism for producing lower temperature alteration phases and the rim phases found in these inclusions. We conclude that planetary processes must thus be considered in the formation history of CAI, and that it is necessary to reconsider the classification system of these objects in light of the replacement process proposed here.  相似文献   

14.
Oxygen-isotopic compositions in conjunction with petrologic investigation have been determined for a coarse-grained type B2 Ca, Al-rich inclusion (CAI) from the reduced CV3 Vigarano using secondary ion mass spectrometry. The oxygen-isotopic compositions of minerals are distributed along the carbonaceous chondrite anhydrous mineral line indicating mixing between 16O-rich and 16O-poor nebular components. The O-isotopic heterogeneities among and within minerals in the CAI interior indicate that CAI formation started in an 16O-rich nebula and subsequently continued in an 16O-poor nebula. 16O-rich signatures of melilite and fassaite in the Wark-Lovering rim and of olivine of the accretionary rim indicate that the nebular environment during formation of the CAI returned to an 16O-rich composition after processing in an 16O-poor nebula. These O-isotopic variations in the CAI support multiple heating events in the solar nebula and indicate that the nebular environments fluctuated from 16O-rich to 16O-poor and back to 16O-rich compositions during the formation of a single CAI.  相似文献   

15.
We review two models for the origin of the calcium-, aluminum-rich inclusion (CAI) oxygen isotope mixing line in the solar nebula: (1) CO self-shielding, and (2) chemical mass-independent fractionation (MIF). We consider the timescales associated with formation of an isotopically anomalous water reservoir derived from CO self-shielding, and also the vertical and radial transport timescales of gas and solids in the nebula. The timescales for chemical MIF are very rapid. CO self-shielding models predict that the Sun has Δ17OSMOW ∼ −20‰ (Clayton, 2002), and chemical mass-independent fractionation models predict Δ17OSMOW ∼0‰. Preliminary Genesis results have been reported by McKeegan et al. (McKeegan K. D., Coath C. D., Heber, V., Jarzebinski G., Kallio A. P., Kunihiro T., Mao P. H. and Burnett D. S. (2008b) The oxygen isotopic composition of captured solar wind: first results from the Genesis. EOS Trans. AGU 89(53), Fall Meet. Suppl., P42A-07 (abstr)) and yield a Δ17OSMOW of ∼ −25‰, consistent with a CO self-shielding scenario. Assuming that subsequent Genesis analyses support the preliminary results, it then remains to determine the relative contributions of CO self-shielding from the X-point, the surface of the solar nebula and the parent molecular cloud.The relative formation ages of chondritic components can be related to several timescales in the self-shielding theories. Most importantly the age difference of ∼1-3 My between CAIs and chondrules is consistent with radial transport from the outer solar nebula (>10 AU) to the meteorite-forming region, which supports both the nebular surface and parent cloud self-shielding scenarios. An elevated radiation field intensity is predicted by the surface shielding model, and yields substantial CO photolysis (∼50%) on timescales of 0.1-1 My. An elevated radiation field is also consistent with the parent cloud model. The elevated radiation intensities may indicate solar nebula birth in a medium to large cluster, and may be consistent with the injection of 60Fe from a nearby supernova and with the photoevaporative truncation of the solar nebula at KBO orbital distances (∼47 AU). CO self-shielding is operative at the X-point even when H2 absorption is included, but it is not yet clear whether the self-shielding signature can be imparted to silicates. A simple analysis of diffusion times shows that oxygen isotope exchange between 16O-depleted nebular H2O and chondrules during chondrule formation events is rapid (∼minutes), but is also expected to be rapid for most components of CAIs, with the exception of spinel. This is consistent with the observation that spinel grains are often the most 16O-rich component of CAIs, but is only broadly consistent with the greater degree of exchange in other CAI components. Preliminary disk model calculations of self-shielding by N2 demonstrate that large δ15N enrichments (∼ +800‰) are possible in HCN formed by reaction of N atoms with organic radicals (e.g., CH2), which may account for 15N-rich hotspots observed in lithic clasts in some carbonaceous chondrites and which lends support to the CO self-shielding model for oxygen isotopes.  相似文献   

16.
Primordial compositions of refractory inclusions   总被引:1,自引:0,他引:1  
Bulk chemical and O-, Mg- and Si-isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg- and Si-isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates, but only if different inclusions condensed from nebular regions that ranged in total pressure from 10−6 to 10−1 bar, regardless of whether they formed in a system of solar composition or in one enriched in dust of ordinary chondrite composition relative to gas by a factor of 10 compared to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al2O3 relative to more volatile MgO + SiO2 is due to initial condensation and 20% due to subsequent evaporation for both Types A and B inclusions.  相似文献   

17.
太阳系形成及演化研究方法   总被引:3,自引:0,他引:3  
通过对陨石的研究,说明太阳系的形成与演化历史,包括太阳星云的凝聚过程、高温加热熔融事件和低温蚀变过程,陨石母体的热变质作用、熔融分异作用以及冲击变质作用等。对太阳星云的化学组成和同位素组成不均一性、前太阳物质的存在及其意义、太阳系形成和演化的同位素绝对年龄、间隔年龄以及宇宙射线暴露年龄等进行了讨论。结合太阳系形成和演化的研究,特别对电子探针、离子探针、透射电子显微镜以及拉曼光谱等微束分析技术在该领域的应用和相关问题进行了讨论。  相似文献   

18.
Greyish-brown, irregularly-shaped aggregates composed predominantly of olivine make up ~2% of the Allende meteorite by volume. Many of the aggregates are constructed of subspherical lumps of micron-sized crystals of olivine, pyroxene, nepheline and sodalite surrounded by coarsergrained olivine. Rarely, anorthite, spinel and perovskite are also present. The olivine ranges in composition from Fo64 to Fo99. Pyroxenes range from aluminous diopside to hedenbergite to very Al-rich and Ti-Al-rich varieties. The nepheline contains 1.6–2.4% K2O and 1.6–5.2% CaO but the sodalite is significantly poorer in these elements. The spinel contains 2.1–13.4% FeO. Textural information and oxygen isotopic data suggest that the aggregates are composed of primary, solid condensates from the solar nebula. The perovskite. spinel and Ti-Al-rich pyroxenes are the remains of high-temperature condensates but the olivine compositions and the presence of feldspathoids indicate that some of the grains continued to react with the solar nebular vapor in the temperature range 500–900°K.  相似文献   

19.
Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation.Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites.  相似文献   

20.
More than thirty polycyclic aromatic hydrocarbons, including nine heterocyclic aromatic compounds, have been identified in solvent extracts of the Murchison meteorite by gas chromatography-mass spectrometry using bonded-phase fused silica columns. Structural isomers of several alkylated aromatic hydrocarbons, including methylpyrene and methylphenanthrene were chromatographically separated, thus allowing calculations of the amount of alkyl substituted compounds in the solvent extracts. The ratio of odd-carbon number to even-carbon number was found to be approximately 0.1. Based on these data and literature data from model pyrolysis experiments, a temperature of 1000°C is suggested for the formation of polycyclic aromatic hydrocarbons in the solar nebula or premeteoritic body. The value of 1000°C is within the range of temperatures for the condensation of the nebular material from the initial high temperature phases to the lower temperature phases at which chemical and isotopic equilibria were frozen. A simple model for the abiotic synthesis of heterocyclic compounds from simple aliphatic precursors is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号