首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric Fe i line at 6173.34 Å and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning ±172 mÅ around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and γ-ray spectra (this was the first γ-ray flare of Cycle 24). The Fe i line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.  相似文献   

2.
We analyzed magnetic-field structures of three three-dipole magnetic stars HD 18078, HD 37776, and HD 149438. The fact that the model and observed phase dependences B e (Φ) and B s (Φ) for HD 18078 computed with the same parameters of the dipoles agree with each other shows conclusively that global magnetic structures are formed by dipole structures. Magnetic poles show up conspicuously on Mercator maps of the distribution of magnetic field, the field strength there is maximal and equal to B p = 3577, 10 700, and 275Gin the three stars mentioned above.Dipolemodelsmake it possible to analyze magnetic-field structure inside stars.  相似文献   

3.
The polarization of hard solar X-radiation (> 10 keV) is calculated on the assumption that electrons get a non-isotropic velocity distribution in the initial phase of a flare. The brems-strahlung generated by nonthermal electrons spiralling around magnetic field lines with discrete pitch angles is considerably polarized if observed at approximately right angles to the magnetic field. In the energy range from 10 to 50 keV the degree of polarization is not strongly dependent on the photon energy. For pitch-angle distributions of the form sin2 and cos2, the polarization has opposite signs; it decreases appreciably at high photon energies. The observation of X-ray polarization will be useful in deducing the physical conditions in flares.  相似文献   

4.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   

5.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   

6.
The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory produces line-of-sight (LOS) observables (Doppler velocity, magnetic-field strength, Fe i line width, line depth, and continuum intensity) as well as vector magnetic-field maps at the solar surface. The accuracy of LOS observables is dependent on the algorithm used to translate a sequence of HMI filtergrams into the corresponding observables. Using one hour of high-cadence imaging spectropolarimetric observations of a sunspot in the Fe i line at 6173 Å through the Interferometric Bidimensional Spectrometer installed at the Dunn Solar Telescope, and the Milne–Eddington inversion of the corresponding Stokes vectors, we test the accuracy of the observables algorithm currently implemented in the HMI data-analysis pipeline: the MDI-like algorithm. In an attempt to improve the accuracy of HMI observables, we also compare this algorithm to others that may be implemented in the future: a least-squares fit with a Gaussian profile, a least-squares fit with a Voigt profile, and the use of second Fourier coefficients in the MDI-like algorithm.  相似文献   

7.
Starting from the idea that the electrons accelerated during a solar flare have originally a preferred direction, the angular distribution and the polarization of bremsstrahlung below 10 Å is calculated taking into account the influence of the magnetic field. The energy distribution of the nonthermal electrons is based on X-ray spectra measured by the Leicester group during flares in 1962 and 1967. In addition to the case of a fixed angle between the electron velocity and the magnetic field, an angular distribution of the form sin n is considered. The results may be used to test flare models. Recent measurements of the polarization of solar X-radiation yield the expected order of magnitude.Paper presented to the Int. Symp. on Solar-Terr. Phys., Leningrad, May 1970.  相似文献   

8.
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects – from Sun to Earth – to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO (Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ~?50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of \({\sim}\,4\,\mbox{--}\,20~\mathrm{R}_{\odot }\). The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.  相似文献   

9.
The structure of the photospheric magnetic field during solar flares is examined using echelle spectropolarimetric observations. The study is based on several Fe i and Cr i lines observed at locations corresponding to brightest Hα emission during thermal phase of flares. The analysis is performed by comparing magnetic-field values deduced from lines with different magnetic sensitivities, as well as by examining the fine structure of I±V Stokes-profiles’ splitting. It is shown that the field has at least two components, with stronger unresolved flux tubes embedded in weaker ambient field. Based on a two-component magnetic-field model, we compare observed and synthetic line profiles and show that the field strength in small-scale flux tubes is about 2?–?3 kG. Furthermore, we find that the small-scale flux tubes are associated with flare emission, which may have implications for flare phenomenology.  相似文献   

10.
Numerical reconstruction/extrapolation of the coronal nonlinear force-free magnetic field (NLFFF) usually takes the photospheric vector magnetogram as input at the bottom boundary. The magnetic field observed at the photosphere, however, contains a force that is in conflict with the fundamental assumption of the force-free model. It also contains measurement noise, which hinders the practical computation. Wiegelmann, Inhester, and Sakurai (Solar Phys. 233, 215, 2006) have proposed to preprocess the raw magnetogram to remove the force and noise to provide better input for NLFFF modeling. In this paper we develop a new code of magnetogram preprocessing that is consistent with our extrapolation method CESE–MHD–NLFFF (Jiang, Feng, and Xiang in Astrophys. J. 755, 62, 2012; Jiang and Feng in Astrophys. J. 749, 135, 2012a). Based on the magnetic-splitting rule that a magnetic field can be split into a potential-field part and a non-potential part, we split the magnetogram and dealt with the two parts separately. The preprocessing of the magnetogram’s potential part is based on a numerical potential-field model, and the non-potential part is preprocessed using the similar optimization method of Wiegelmann, Inhester, and Sakurai (2006). The code was applied to the SDO/HMI data, and results show that the method can remove the force and noise efficiently and improve the extrapolation quality.  相似文献   

11.
Recent magnetic modeling efforts have shown substantial misalignment between theoretical models and observed coronal loop morphology as observed by STEREO/EUVI, regardless of the type of model used. Both potential field and non-linear force-free field (NLFFF) models yielded overall misalignment angles of 20??C?40 degrees, depending on the complexity of the active region (Sandman et al., Solar Phys. 259, 1, 2009; DeRosa et al., Astrophys. J. 696, 1780, 2009) We demonstrate that with new, alternative forward-fitting techniques, we can achieve a significant reduction in the misalignment angles compared with potential field source surface (PFSS) models and NLFFF models. Fitting a series of submerged dipoles to the field directions of stereoscopically triangulated loops in four active regions (30 April, 9 May, 19 May, and 11 December 2007), we find that 3??C?5 dipoles per active region yield misalignment angles of ???11°??C?18°, a factor of two smaller than those given by previously established extrapolation methods. We investigate the spatial and temporal variation of misalignment angles with subsets of loops for each active region, as well as loops observed prior to and following a flare and filament eruption, and find that the spatial variation of median misalignment angles within an active region (up to 75%) exceeds the temporal variation associated with the flare (up to 40%). We also examine estimates of the stereoscopic error of our analysis. The corrected values yield a residual misalignment of 7°??C?13°, which is attributed to the non-potentiality due to currents in the active regions.  相似文献   

12.
Using in situ observations from the Advanced Composition Explorer (ACE), we have identified 70 Earth-affecting interplanetary coronal mass ejections (ICMEs) in Solar Cycle 24. Because of the unprecedented extent of heliospheric observations in Cycle 24 that has been achieved thanks to the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instruments onboard the Solar Terrestrial Relations Observatory (STEREO), we observe these events throughout the heliosphere from the Sun to the Earth, and we can relate these in situ signatures to remote sensing data. This allows us to completely track the event back to the source of the eruption in the low corona. We present a summary of the Earth-affecting CMEs in Solar Cycle 24 and a statistical study of the properties of these events including the source region. We examine the characteristics of CMEs that are more likely to be strongly geoeffective and examine the effect of the flare strength on in situ properties. We find that Earth-affecting CMEs in the first half of Cycle 24 are more likely to come from the northern hemisphere, but after April 2012, this reverses, and these events are more likely to originate in the southern hemisphere, following the observed magnetic asymmetry in the two hemispheres. We also find that as in past solar cycles, CMEs from the western hemisphere are more likely to reach Earth. We find that Cycle 24 lacks in events driving extreme geomagnetic storms compared to past solar cycles.  相似文献   

13.
The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments (e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE – Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/(EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument’s individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget (Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.  相似文献   

14.
A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS-Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single (“elementary”) flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16?–?1.51 keV, 1.51?–?15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue – the SphinX Flare Catalogue – which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.  相似文献   

15.
We study the velocity fields in the region of quiet solar filaments using spectral observations at the Sayan Solar Observatory (ISTP, Irkutsk). Once the series of spectral images have been processed, maps of the two-dimensional distribution of the velocity and its variations in the chromosphere (in the Hβ λ = 486.13 nm line) and the photosphere (in the Fe I λ = 486.37 nm line) are constructed. The motions in the filaments have been found to consist of steady and periodic components. Our analysis of the spatial distributions of various oscillation modes shows that the short-period (<10 min) oscillations propagate mainly vertically and are observed at the filament edges, on scales of several arcseconds. The quasi-hour (>40 min) oscillations propagate mostly along the filament at a small angle to its axis. The intensity in the Hβ core in individual fragments of some filaments varies with a period of about one hour. The observed velocity structures in the filaments and the imbalance of steady motions on the opposite sides of the filaments can be explained in terms of the model of a twisted fine-structure magnetic flux tube.  相似文献   

16.
Four microwave bursts have been selected from the Nobeyama Radio Polarimeter (NoRP) observations with an extremely flat spectrum in the optically thin part and a very hard spectral index between 0 and ?1 in the maximum phase of all bursts. It is found that the time evolution of the turnover frequency is inversely proportional to the time profiles of the radio flux in all bursts. Based on the nonthermal gyrosynchrotron theory of Ramaty (Astrophys. J. 158, 753, 1969), the local magnetic field strength and the electron spectral index are calculated uniquely from the observed radio spectral index and the turnover frequency. We found that the electron energy spectrum is very hard (spectral index 1?–?2), and the time variation of the magnetic field strength is also inversely proportional to the radio flux as a function of time in all bursts. Hence, the time evolution of the turnover frequency can be explained directly by its dependence on the local magnetic field strength. The high turnover frequency (several tens of GHz) is mainly caused by a strong magnetic field of up to several hundred gauss, and probably by the Razin effect under a high plasma density over \(10^{10}~\mbox{cm}^{-3}\) in the maximum phase of these bursts. Therefore, the extremely flat microwave spectrum can be well understood by the observed high turnover frequency and the calculated hard electron spectral index.  相似文献   

17.
Based on energetic particle observations made at \({\approx}\,1\) AU, we present a catalogue of 46 wide-longitude (\({>}\,45^{\circ}\)) solar energetic particle (SEP) events detected at multiple locations during 2009?–?2016. The particle kinetic energies of interest were chosen as \({>}\,55\) MeV for protons and 0.18?–?0.31 MeV for electrons. We make use of proton data from the Solar and Heliospheric Observatory/Energetic and Relativistic Nuclei and Electron Experiment (SOHO/ERNE) and the Solar Terrestrial Relations Observatory/High Energy Telescopes (STEREO/HET), together with electron data from the Advanced Composition Explorer/Electron, Proton, and Alpha Monitor (ACE/EPAM) and the STEREO/Solar Electron and Proton Telescopes (SEPT). We consider soft X-ray data from the Geostationary Operational Environmental Satellites (GOES) and coronal mass ejection (CME) observations made with the SOHO/Large Angle and Spectrometric Coronagraph (LASCO) and STEREO/Coronagraphs 1 and 2 (COR1, COR2) to establish the probable associations between SEP events and the related solar phenomena. Event onset times and peak intensities are determined; velocity dispersion analysis (VDA) and time-shifting analysis (TSA) are performed for protons; TSA is performed for electrons. In our event sample, there is a tendency for the highest peak intensities to occur when the observer is magnetically connected to solar regions west of the flare. Our estimates for the mean event width, derived as the standard deviation of a Gaussian curve modelling the SEP intensities (protons \({\approx}\,44^{\circ}\), electrons \({\approx}\,50^{\circ}\)), largely agree with previous results for lower-energy SEPs. SEP release times with respect to event flares, as well as the event rise times, show no simple dependence on the observer’s connection angle, suggesting that the source region extent and dominant particle acceleration and transport mechanisms are important in defining these characteristics of an event. There is no marked difference between the speed distributions of the CMEs related to wide events and the CMEs related to all near-Earth SEP events of similar energy range from the same time period.  相似文献   

18.
We study the general X-ray and multiwavelength characteristics of microflares of GOES class A0.7 to B7.4 (background subtracted) detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on 26 September 2003 comparing them with the properties of regular flares. All the events for which X-ray imaging was feasible originated in one active region and were accumulated in areas with intermixed magnetic polarities. During the events’ rise and peak phase, the RHESSI X-ray spectra show a steep nonthermal power-law component (4?γ?10) for energies ??10 keV. Further evidence for the presence of electron beams is provided by the association with radio type III bursts in 5 out of 11 events where AIP radio spectra were available. The strongest event in our sample shows radio signatures of a type II precursor. The thermally emitting flare plasma observed by RHESSI is found to be hot, 11?T?15 MK, with small emission measures, 1046?EM?1047 cm?3, concentrated in the flare loop. In the EUV (TRACE 171 Å), the UV (TRACE 1600 Å) and Kanzelhöhe Solar Observatory Hα, impulsive brightenings at both ends of the RHESSI 3?–?6 keV X-ray loop source are observed, situated in opposite magnetic polarity fields. During the decay phase, a postflare loop at the location of the RHESSI loop source is observed in the TRACE 171 Å? channel showing plasma that is cooled from ??10 MK to ≈?1 MK. Correlations between various thermal and nonthermal parameters derived from the RHESSI microflare spectra compared to the same correlations obtained for a set of small and large flares by Battaglia et al. (Astron. Astrophys. 439, 737, 2005) indicate that the RHESSI instrument gives us a spectrally biased view since it detects only hot (T?10 MK) microflares, and thus the correlations between RHESSI microflare parameters have to be interpreted with caution. The thermal and nonthermal energies derived for the RHESSI microflares are \(\bar{E}_{\mathrm{th}}=7\times 10^{27}\) ergs and \(\bar{E}_{\mathrm{nth}}=2\times 10^{29}\) ergs, respectively. Possible reasons for the order-of-magnitude difference between the thermal and nonthermal microflare energies, which was also found in previous studies, are discussed. The determined event rate of 3.7 h?1 together with the average microflare energies indicate that the total energy in the observed RHESSI microflares is far too small to account for the heating of the active region corona in which they occur.  相似文献   

19.
In this article, an automated solar flare detection method applied to both full-disk and local high-resolution H\(\upalpha\) images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of H\(\upalpha\) solar flares.  相似文献   

20.
A moving Type IV burst, observed with the Culgoora radioheliograph on 1970 April 29, moved out to about 3 R and attained high circular polarization before fading. The appearance of the moving Type IV source suggests an isolated, self-contained, synchrotron emitting plasmoid. Magnetic field maps of the corona derived from photospheric observations indicate that the plasmoid moved almost radially outward from the flare region along open field lines. To explain the observed source structure and high unipolar polarization, we suggest that a ring of electric current was ejected from the low corona and guided by coronal magnetic field lines; the radio emission was synchrotron radiation generated by mildly-relativistic electrons trapped in the poloidal magnetic field of the ring current.Part of the research reported here was carried out while the author was at the Division of Radiophysics, C.S.I.R.O., Sydney, Australia.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号