首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Assessing streamflow sensitivity to variations in glacier mass balance   总被引:1,自引:0,他引:1  
We examine long-term streamflow and mass balance data from two Alaskan glaciers located in climatically distinct basins: Gulkana Glacier, a continental glacier located in the Alaska Range, and Wolverine Glacier, a maritime glacier located in the Kenai Mountains. Over the 1966–2011 study interval, both glaciers lost mass, primarily as a result of summer warming, and streamflow increased in both basins. We estimate total glacier runoff via summer mass balance and quantify the fraction of runoff related to annual mass imbalances. In both climates, annual (net) mass balance contributes, on average, less than 20 % of total streamflow, substantially less than the fraction related to summer mass loss (>50 %), which occurs even in years of glacier growth. The streamflow fraction related to changes in annual balance increased significantly only in the continental environment. In the maritime climate, where deep winter snowpacks and frequent rain events drive consistently high runoff, the magnitude of this streamflow fraction was small and highly variable, precluding detection of any existing trend. Furthermore, our findings suggest that glacier mass change is likely to impact total basin water yield, timing of runoff and water quality in the continental environment. However, the impacts of maritime glacier change appear more likely to be limited to water quality and runoff timing.  相似文献   

2.
全球山地冰冻圈变化、影响与适应   总被引:1,自引:0,他引:1  
冰冻圈是高山地区不可或缺的重要组成部分,居住着全球约10%的人口。近几十年来,冰冻圈变化对山区和周围地区的自然和人类系统产生了广泛而深远的影响,对海洋也发挥着重要作用。IPCC最新发布的《气候变化中的海洋和冰冻圈特别报告》(SROCC)指出,过去几十年全球高山区气温显著升高,使山地冰冻圈发生了大范围显著退缩。观测到的山地(特别是低海拔山区)积雪期缩短、雪深和积雪覆盖范围减小;冰川物质持续亏损,其中全球最大的冰川负物质平衡出现在南安第斯山、高加索山和欧洲中部,亚洲高山区冰川负物质平衡最小;多年冻土温度升高、厚度减薄,地下冰储量减少;河、湖冰持续时间缩短。随着气候持续变暖,山地冰冻圈在21世纪仍将呈继续退缩状态。到21世纪末,低海拔山区积雪深度和积雪期将减少,冰川物质损失继续增加,多年冻土持续退化。冰冻圈变化已经或将改变山地灾害发生频率和强度,并对水资源、生态系统和经济社会系统产生重要影响。应对山地冰冻圈变化应从管理和优化利用冰冻圈资源、加强冰冻圈变化灾害风险的有效治理、增强国际合作及公约制定等适应策略着手开展,增强适应能力,从而有益于推动山地生态系统和经济社会系统可持续发展。  相似文献   

3.
This paper describes the application of remote sensing in monitoring the fluctuations in one of the mountain glaciers in the Ecuadorean Andes during the past few decades using ASTER, EO-1 ALI, Landsat MSS, TM and ETM + images. Satellite images were used to calculate the snow line altitudes (SLAs) during the period 1979–2013. Cotopaxi ice covered volcano was studied as representative of Ecuadorian glaciers in the eastern cordillera. Precipitation and air temperature data from various gauging stations within the range of 30 km from the study site and monthly discharge and water level data from a gauging station were also utilized in this study. Anomalies in precipitation and temperature were found to be slightly different in the Cotopaxi region compared to nearby Antizana in the same cordillera and Chimborazo region in the western cordillera. An attempt to correlate the El Niño—southern oscillation phenomenon with the glacier fluctuations in Ecuadorian Andes was done successfully. Cold and warm regimes of Pacific Decadal Oscillation is also considered. The calculated glacier fluctuations obtained were similar to that performed on the nearby Antizana 15 in the eastern cordillera during 1995–2002. Precipitation and temperature anomalies were similar with Antizana 15. It is evident from the research that SLAs were highly fluctuated between the period of occurrence of El Niño and La Niña events. It is also seen that the glacier fluctuations show a negative mass balance trend in during the warm regime of Pacific Decadal Oscillation during the past three decades. Glaciated areas were advanced during the La Nina events in the cold regime of PDO during 1998–2002.  相似文献   

4.
Hsien-Wang Ou 《Climate Dynamics》2013,40(7-8):1687-1706
We consider a box model of the Arctic system to examine its natural variability pertaining to the decadal Arctic Oscillation (AO) and the multidecadal Low-Frequency Oscillation (LFO). We distinguish the hierarchical order of the winter over the summer open-areas with only the former perturbing the sea-level pressure to effect coupled balances. From such balances, we discern two feedback loops on the winter open-area: a positive ice-flux feedback that elevates its overall variance and a negative buoyancy feedback that suppresses its low-frequency variance to render a decadal AO peak when subjected to white atmospheric noise. This negative buoyancy feedback may also reproduce observed phasing among LFO signals forced by the AMV (Atlantic Multidecadal Variability), thus resolving some outstanding questions. For the summer open-area, its variance is induced mainly by the winter forcings and insensitive to the base state. Its decadal signal merely reflects the preconditioning winter open-area, but its LFO variance is induced additionally and in comparable measure by the winter SAT (surface air temperature) through the latter’s effect on the melt duration and the first-year ice thickness. As such, the summer open-area signal is dominantly multidecadal, which moreover is several times its winter counterpart, consistent with the observed disparity. Although the model is extremely crude, its explicit solution allows quantitative comparison with observations and the generally positive outcome suggests that the model has isolated the essential physics of the Arctic natural variability of our concern.  相似文献   

5.
Studies from a variety of disciplines documentrecentchange in the northern high-latitude environment.Prompted by predictions of an amplified response oftheArctic to enhanced greenhouse forcing, we present asynthesis of these observations. Pronounced winter andspring warming over northern continents since about 1970ispartly compensated by cooling over the northern NorthAtlantic. Warming is also evident over the centralArcticOcean. There is a downward tendency in sea ice extent,attended by warming and increased areal extent of theArctic Ocean's Atlantic layer. Negative snow coveranomalies have dominated over both continents sincethelate 1980s and terrestrial precipitation has increasedsince 1900. Small Arctic glaciers have exhibitedgenerally negative mass balances. While permafrost haswarmed in Alaska and Russia, it has cooled in easternCanada. There is evidence of increased plant growth,attended by greater shrub abundance and northwardmigration of the tree line. Evidence also suggeststhatthe tundra has changed from a net sink to a net sourceofatmospheric carbon dioxide.Taken together, these results paint a reasonablycoherent picture of change, but their interpretationassignals of enhanced greenhouse warming is open todebate.Many of the environmental records are either short,areof uncertain quality, or provide limited spatialcoverage. The recent high-latitude warming is also nolarger than the interdecadal temperature range duringthis century. Nevertheless, the general patterns ofchange broadly agree with model predictions. Roughlyhalfof the pronounced recent rise in Northern Hemispherewinter temperatures reflects shifts in atmosphericcirculation. However, such changes are notinconsistentwith anthropogenic forcing and include generallypositive phases of the North Atlantic and ArcticOscillations and extratropical responses to theEl-NiñoSouthern Oscillation. An anthropogenic effect is alsosuggested from interpretation of the paleoclimaterecord,which indicates that the 20th century Arctic is thewarmest of the past 400 years.  相似文献   

6.
The Medieval Warm Period is an interval of purportedly warm climate during the early part of the past millennium. The duration, areal extent, and even existence of the Medieval Warm Period have been debated; in some areas the climate of this interval appears to have been affected more by changes in precipitation than in temperature. Here, we provide new evidence showing that several glaciers in western North America advanced during Medieval time and that some glaciers achieved extents similar to those at the peak of the Little Ice Age, many hundred years later. The advances cannot be reconciled with a climate similar to that of the twentieth century, which has been argued to be an analog, and likely were the result of increased winter precipitation due to prolonged La Niña-like conditions that, in turn, may be linked to elevated solar activity. Changes in solar output may initiate a response in the tropical Pacific that directly impacts the El Niño/Southern Oscillation and associated North Pacific teleconnections.  相似文献   

7.
Historical and proxy records document that there is a substantial asynchronous development in temperature, precipitation and glacier variations between European regions during the last few centuries. The causes of these temporal anomalies are yet poorly understood. Hence, highly resolved glacier reconstructions based on historical evidence can give valuable insights into past climate, but they exist only for few glaciers worldwide. Here, we present a new reconstruction of length changes for the Glacier des Bossons (Mont Blanc massif, France), based on unevaluated historical material. More than 250 pictorial documents (drawings, paintings, prints, photographs, maps) as well as written accounts have been critically analysed, leading to a revised picture of the glacier’s history, especially from the mid-eighteenth century up to the 1860s. Very important are the drawings by Jean-Antoine Linck, Samuel Birmann and Eugène Viollet-le Duc, which depict meticulously the glacier’s extent during the vast advance and subsequent retreat during the nineteenth century. The new glacier reconstruction extends back to AD 1580 and proves maxima of the Glacier des Bossons around 1610/1643, 1685, 1712, 1777, 1818, 1854, 1892, 1921, 1941, and 1983. The Little Ice Age maximum extent was reached in 1818. Until the present, the glacier has lost about 1.5 km in length, and it is now shorter than at any time during the reconstruction period. The Glacier des Bossons reacts faster than the nearby Mer de Glace (glacier reconstruction back to AD 1570 available). The Mont Blanc area is, together with the valley of Grindelwald in the Swiss Alps (two historical glacier reconstructions available back to AD 1535, and 1590, respectively), among the two regions that are probably best-documented in the world regarding historical glacier data.  相似文献   

8.
This article reviews evidence for 16th century glacial fluctuations in the western Swiss and the French Alps. Previously available sources and new historical sources, as well as dendrochronological investigations of larches that were destroyed by glacier advances (Great Aletsch Glacier), have shed much light in recent years on glacial movements in the 16th century. Many of the earliest know Records for glacial activity in the Western Alps date from the end of the 16th century and refer to outbursts of glacier dammed lakes (Allalin Glacier, Giétro Glacier, Rutor Glacier). Only few but very important evidence in the first half of the 16th century refer directly to glacial extension as in the case of the Lower Grindelwald Glacier and the Rhone Glacier. The drastic change in climate starting in 1565 which cause the remarkable advance of Alpine glaciers can be easily seen in the tree-ring curves (maximum density, tree ring width) of larches (Larix decidua Mill.) in the Alps.  相似文献   

9.
Alpine glaciers directly and indirectly respond to climate and play a significant role in mountain geodynamics. Many glaciers around the world have been found to be retreating and downwasting, although these patterns are highly variable due to variations in local topography, regional climate and ice-flow dynamics. Unfortunately, limited information is available on glacier fluctuations in the Wakhan Pamir of Afghanistan, and no data exist from there in the World Glacier Monitoring Services (WGMS) database. Our general circulation model (GCM) climate simulations represent a double carbon-dioxide-loading scenario, and results suggest that glaciers in this region should be downwasting and retreating. Therefore, as part of the Global Land Ice Measurements from Space (GLIMS) project, we evaluated ASTER and Landsat MSS data to assess glacier fluctuations from 1976–2003, in the Wakhan Corridor of Afghanistan. We sampled 30 alpine valley, compound alpine valley or cirque-type glaciers of varying size and orientation. Results indicate that 28 glacier-terminus positions have retreated, and the largest average retreat rate was 36 m year???1. Satellite image analysis reveals non-vegetated glacier forefields formed prior to 1976, as well as geomorphological evidence for apparent glacier-surface downwasting after 1976. Climatic conditions and glacier retreat have resulted in disconnection of tributary glaciers to their main trunk, the formation of high-altitude lakes, and an increased frequency and size of proglacial lakes. Collectively, these results suggest increased hazard potential in some basins and a negative regional mass balance.  相似文献   

10.
It is known that the wintertime North Pacific Oscillation (NPO) is an important extratropical forcing for the occurrence of an El Ni?o?Southern Oscillation (ENSO) event in the subsequent winter via the “seasonal footprinting mechanism” (SFM). This study reveals that the Atlantic Multidecadal Oscillation (AMO) can notably modulate the relationship between the winter NPO and the following winter ENSO. During the negative AMO phase, the winter NPO has significant impacts on the following winter ENSO via the SFM. In contrast, the influence of the winter NPO on ENSO is not robust at all during the positive AMO phase. Winter NPO-generated westerly wind anomalies over the equatorial western Pacific during the following spring are much stronger during negative than positive AMO phases. It is suggested that the AMO impacts the winter NPO-induced equatorial westerly winds over the western Pacific via modulating the precipitation climatology over the tropical central Pacific and via modulating the connection of the winter NPO with spring sea surface temperature in the tropical North Atlantic.  相似文献   

11.
An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.  相似文献   

12.
异常弱的南极涛动和2006年我国春季沙尘气候形势   总被引:2,自引:0,他引:2  
从2005/2006年冬季南极涛动的变异出发,讨论2006年我国春季沙尘气候形势,进而考察南极涛动对我国沙尘气候的预测能力。2005/2006年冬季南极涛动非常弱,在两半球间的经向遥相关的作用下,出现南半球中高纬西风减弱,欧亚西风减弱,欧亚冷空气活跃,西伯利亚、蒙古国、我国北方大部地区(包括华北)2005年冬季12月气温较多年平均偏低,这样就造成沙源地区的冻土层增厚,春季回暖后,沙尘物质条件丰富。因此,在弱南极涛动的影响下,春季蒙古气旋活跃,地面大风增加,我国华北地区春季沙尘天气频繁发生。  相似文献   

13.
近百年东亚冬季气温及其大气环流变化型态   总被引:5,自引:2,他引:5  
范可  刘辉 《大气科学》2013,37(2):383-394
利用最新20世纪近百年再分析气象资料,研究近百年东亚冬季气温变化型及其相关的大气环流型态.结果表明近百年内东亚冬季气温主要有两种变化型:第一是东亚西南与东北相反气温变化型,表现在40°N以南及105°E以西地区(西南地区)气温变化与40°N以北及105°E以东地区(东北地区)变化相反;第二是40°N以南气温一致变化型.与第一种气温变化型耦合的大气模态是500hPa欧亚型遥相关、西伯利亚高压及北大西洋涛动.当欧亚型遥相关负位相,北大西洋涛动正位相及西伯利亚高压减弱时,有利于蒙古和我国105° E以东的区域增温而我国西南地区和青藏高原降温,反之亦然.第二种气温变化型耦合大气模态是500hPa西太平洋型遥相关,北太平洋涛动.当西太平洋型遥相关及北太平洋涛动处于正位相时(北太平洋北负南正),东亚40°N以南地区增温,东亚40°N以北地区降温.耦合的大气模态的型态差异,影响各阶段气温的年际变化.近一百年中,欧亚型遥相关和北大西洋涛动在1984~2010期间的型态最显著,是20世纪80年代东亚显著增暖的原因之一.研究还发现20世纪中期后东亚气温的年际变化与极地环流的变化联系紧密,表现在西伯利亚高压范围东扩并与极地环流联系,也是近百年气温趋势上升的一个原因.  相似文献   

14.
20世纪全球增暖最显著的区域   总被引:6,自引:0,他引:6  
Having analyzed a global grid temperature anomaly data set and some sea level pressure data during the last century, we found the following facts. Firstly, the annual temperature change with a warming trend of about 0.6℃/100 years in the tropical area over Indian to the western Pacific Oceans was most closely correlated to the global mean change. Therefore, the temperature change in this area might serve as an indicator of global mean change at annual and longer time scales. Secondly, a cooling of about -0.3℃ / 100 years occurred over the northern Atlantic. Thirdly, a two-wave pattern of temperature change, warming over northern Asia and northwestern America and cooling over the northern Atlantic and the northern Pacific, occurred during the last half century linked to strengthening westerlies over the northern Atlantic and the weakening Siberian High. Fourthly, a remarkable seasonal difference occurred over the Eurasian continent, with cooling (warming) in winter (summer) during 1896-1945, and warming (cooling) in winter (summer) during 1946-1995. The corresponding variations of the North Atlantic Oscillation and the Southern Oscillation were also discussed.  相似文献   

15.
东北三省冬季气温变化的有关研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
 通过简要回顾中国学者有关东北三省冬季气温变化的研究成果,概括分析了近百年或近几十年时间尺度平均气温及最高、最低气温年际、年代际变化的基本特征,综述了与冬季气温年际、年代际变化相关的各类海-气环流因子。近百年来,东北冬季气温上升,1987年前后发生增暖突变;北极涛动、西伯利亚高压、东亚冬季风等是影响东北冬季气温年际变化的主要因子;北极涛动、东亚冬季风、东亚中高纬环流型等的持续性是冬季气温年代际变化的主要因子。对多种变化特征集中出现的20世纪70年代末的气候变化值得深入探讨,也有必要在整个东北三省的范围内,深入开展冬季气温预测方法的系统研究。另外,测站气温序列的非均一性问题也应引起足够重视。  相似文献   

16.
Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.  相似文献   

17.
A glacier parameterization scheme has been developed and implemented into the regional climate model REMO. The new scheme interactively simulates the mass balance as well as changes of the areal extent of glaciers on a subgrid scale. The temporal evolution and the general magnitude of the simulated glacier mass balance in the European Alps are in good accordance with observations for the period 1958–1980, but the strong mass loss towards the end of the twentieth century is systematically underestimated. The simulated decrease of glacier area in the Alps between 1958 and 2003 ranges from −17.1 to −23.6%. The results indicate that observed glacier mass balances can be approximately reproduced within a regional climate model based on simplified concepts of glacier-climate interaction. However, realistic results can only be achieved by explicitly accounting for the subgrid variability of atmospheric parameters within a climate model grid box.  相似文献   

18.
The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century glacier contribution to sea-level rise. Glacier volume changes are calculated with a surface mass balance model combined with volume-area scaling, applied to 89 glaciers in different climatic regions. The mass balance model is based on a simplified energy balance approach, with separated contributions by net solar radiation and the combined other fluxes. Future mass balance is calculated from anomalies in air temperature, precipitation and atmospheric transmissivity, taken from eight global climate models forced with the A1B emission scenario. Regional and global sea-level contributions are obtained by scaling the volume changes at the modelled glaciers to all glaciers larger than 0.1 km2 outside the Greenland and Antarctic ice sheets. This results in a global value of 0.102 ± 0.028 m (multi-model mean and standard deviation) relative sea-level equivalent for the period 2012–2099, corresponding to 18 ± 5 % of the estimated total volume of glaciers. Glaciers in the Antarctic, Alaska, Central Asia and Greenland together account for 65 ± 4 % of the total multi-model mean projected sea-level rise. The projected sea-level contribution is 35 ± 17 % larger when only anomalies in air temperature are taken into account, demonstrating an important compensating effect by increased precipitation and possibly reduced atmospheric transmissivity. The variability in projected precipitation and atmospheric transmissivity changes is especially large in the Arctic regions, making the sea-level contribution for these regions particularly sensitive to the climate model used. Including additional uncertainties in the modelling procedure and the input data, the total uncertainty estimate for the future projections becomes ±0.063 m.  相似文献   

19.
近30年来我国雪量变化的初步探讨   总被引:22,自引:0,他引:22  
李培基 《气象学报》1990,48(4):433-437
本文根据2300多个地面气象台站资料,对近30年来我国雪量波动进行了监测与诊断研究。发现全国尺度的雪量变化趋势与全球平均气温成正相关,其年际波动与火山活动相位相反,多雪冬季与厄尼诺-南方涛动相同步。CO_2增温将加剧雪量分布的区域差异,导致北方平原、盆地积雪日数减少,青藏高原、高山地区和长江中下游降雪量增加。  相似文献   

20.
Glaciers in Himalaya have been studied with respect to their mass balance to assess their response, if any, to global warming. Naradu glacier in the Baspa Valley of Himachal Pradesh is one such glacier that has been studied in the backdrop of the impact of inter- and intra-annual variation in weather parameters on the health of glaciers. The trends in seasonal and monthly mean temperatures from 1994 to 2003 show an interesting shift of peak summer (late August–September) and winter seasons (February–March). The data also suggest night warming during summer (June, August, and September) and winter (November, January, April), and cooling during peak summer seasons (July) and very cold during winter (December, February, March). The fluctuation in ELA, snout position and surface ablation of Naradu glacier is attributed to variation in albedo of rock debris and valley walls from season to season and year to year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号