首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The minimum winter temperature series for the United States Gulf Coast for 1799–1988 (190 values) was subjected to Maximum Entropy Spectral Analysis. Significant periodicities in the QBO region (T-2–3 years) and atT=3.7, 4.5, 5.5, 6.5, 7.5, 12.9, 15.5 and 22 years were detected. Some of these were present in the first half only (1799–1893) while others in the latter half only (1894–1988), indicating a transient nature. Also, more than 50% of the variance was random. Many of the significant periodicities are seen in other geophysical parameters. Some may be harmonics of the 11-year sunspot cycle and the 22-year Hale magnetic sunspot cycle.  相似文献   

2.
The east-west asymmetry has been analyzed using the 1946–2000 corona observation data for the green line at the Kislovodsk station. A positive east-west asymmetry has been revealed throughout the entire observation period except for three years, 1994–1996. Time variations of the east-west asymmetry for certain periods coincide with those for flares. Seasonal variations of the east-west asymmetry revealed earlier by other authors are not confirmed. If seasonal variations of the east-west asymmetry in the corona exist, their amplitudes are smaller than or comparable to the instrumental errors, errors caused by atmospheric variations during the observation period and to differences between the corona-intensity measuring systems used at different observatories.  相似文献   

3.
The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSBUV data accurately represent the absolute solar UV irradiance between 200–405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170–400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.  相似文献   

4.
The east-west asymmetry has been analyzed using the 1946–2000 corona observation data for the green line at the Kislovodsk station. A positive east-west asymmetry has been revealed throughout the entire observation period except for three years, 1994–1996. Time variations of the east-west asymmetry for certain periods coincide with those for flares. Seasonal variations of the east-west asymmetry revealed earlier by other authors are not confirmed. If seasonal variations of the east-west asymmetry in the corona exist, their amplitudes are smaller than or comparable to the instrumental errors, errors caused by atmospheric variations during the observation period and to differences between the corona-intensity measuring systems used at different observatories.  相似文献   

5.
Summary Atmospheric total ozone contents over three stations in north India have been studied. A power spectrum analysis has been made of daily values recoreded at these stations during the winter season. Three types of periodicities have been observed in the available records, namely, oscillations with a period of (a) 2.5–3.5 days, (b) 4.0–5.3 days and (c) 8.0–9.6 days. The first and third type of oscillations were also observed when the data were extended to cover an entire year, instead of the winter season alone. A possible mechanism for the occurrence of these periodicities is discussed.  相似文献   

6.
United States cloudiness data for 1950–1992 show quasi-biennial (QBO) and quasi-triennial (QTO) oscillations which match partly with the QBO and QTO of the Southern Oscillation (SO) index (the Tahiti minus Darwin pressure), but not with the QBO of the 50-mb equatorial zonal wind. Cloudiness also shows significant periodicities near 4.2 and 7.5 years, and probably a sunspot cycle effect (periodicities 11–14 years), with minimum cloudiness at or soon after sunspot minima, though this could also be due to periodicities of 10 and 17 years observed in the SO index. During 1955-1970, cloudiness increased by about 1%. Thereafter, it remained almost steady for the eastern and central parts of the USA, but continued to rise until about 1980 for the western USA.  相似文献   

7.
Summary This paper describes a study of the fluctuations in total atmospheric ozone amount as measured with a Dobson Spectrophotometer during the summer season over three north Indian stations, using the technique of power spectrum analysis. In all 19 spectra have been constructed. The long term trend was removed by applying a high pass filter. The main conclusions are: (1) The nature of the spectrum at a station generally differs from year to year. (2) Spectra of different stations during the same year, are generally different. (3) From the significance study of the spectral peaks, most of the spectra revealed the presence of two types of periodicities. One of these is in the range of 10–17 days while the other is found to have a range of 4.5–8.3 days. (4) It has been suggested that the former periodicity may be closely linked to the index cycle, while the latter may be related to the long waves in the Westerlies.  相似文献   

8.
Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW) activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.  相似文献   

9.
In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called ‘infradian rhythms’. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF) which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1) the vertical component of the induction vector of the IMF, Bz, and (2) a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.  相似文献   

10.
Wavelet and cross-wavelet analysis are used to identify and describe spatial and temporal variability in Canadian seasonal precipitation, and to gain further insights into the dynamical relationship between the seasonal precipitation and the dominant modes of climate variability in the Northern Hemisphere. Results from applying continuous wavelet transform to seasonal precipitation series from 201 stations selected from Environment Canada Meteorological Network reveal striking climate-related features before and after the 1940s. The span of available observations, 1900–2000, allows for depicting variance and covariance for periods up to 12 years. Scale-averaged wavelet power spectra are used to simultaneously assess the temporal and spatial variability in each set of 201 seasonal precipitation time series. The most striking feature, in the 2–3-year period and in the 3–6-year period—the 6–12-year period is dominated by white noise and is not considered further—is a net distinction between the timing and intensity of the temporal variability in autumn, winter and spring–summer precipitation. It is found that the autumn season exhibits the most intense activity (or variance) in both the 2–3 year and the 3–6 year periods. The winter season corresponds to the least intense activity for the 2–3 year period, but it exhibits more activity than the spring–summer for the 3–6 year period.Cross-wavelet analysis is provided between the seasonal precipitation and four selected climatic indices: the Pacific North America (PNA), the North Atlantic Oscillation (NAO), the Northern Hemisphere Annular Mode (NAM) originally called the Arctic Oscillation, and the sea surface temperature series over the Niño-3 region (ENSO). The wavelet cross-spectra revealed coherent space–time variability of the climate–precipitation relationship throughout Canada. It is shown that strong climate/precipitation activity (or covariance) in the 2–6 year period starts after 1940 whatever the climatic index and the season. Prior to year 1940, only local and weaker 2–6 year activity is revealed in western Canada essentially in winter and autumn, but overall a non-significant precipitation/climate relationship is observed prior to 1940. Correlation analysis in the 2–6 year band between the seasonal precipitation and the selected climatic indices revealed strong positive correlations with the ENSO, the NAO, and the NAM in eastern and western Canada for the post-1940 period. For the period prior to 1940, the correlation tend be negative for all the indices whatever the region. A particular feature in the correlation analysis results is the consistently stronger and positive NAM–precipitation correlations in all the regions since 1940. The cross-wavelet spectra and the correlation analysis in the 2–6 year band suggest the presence of a change point around 1940 in Canadian seasonal precipitation—that is found to be more likely related to NAM dynamics.  相似文献   

11.
Synopsis 《Limnologica》1999,29(3):205
The WVU-Symposium, organized by the Wissenschaftsverbund Umwelt at the Rostock University, was held in Rostock, Germany, from April 15–20, 1996. 109 participants and 22 students attend the symposium. 13 invited lectures and 22 lectures were given and 16 posters presented. In two plenary discussions the general results achieved were discussed as well as gaps, problems and main trends in the next 10–20 years. The synopsis gives an overview of the main points.  相似文献   

12.
13.
We examine here three sets of recently published data: (1) Updated Indian Rainfall (IRF) time series of the entire country covering the time span of 1826–1994, (2) coral growth rate time series for a period of 42 years spanning 1948–1990 from the Arabian Sea, and (iii) NINO3 temperature records to investigate the signature of ENSO response of the Indian monsoon. Multiple spectral techniques (e.g., multi-taper method (MTM), maximum entropy method (MEM), wavelet and cross spectra) are used to identify the coherent cyclic and nonstationary modes in these records. MTM analysis of IRF time series resolves statistically significant variability (>90% C.I) (i) at multi-decadal (66–70 years) scales related to the well-known global temperature variability of internal atmospheric-ocean origin, (ii) relatively weak signals at 13 and 22 years (solar cycles) and (iii) the 2.5 to 7.5-year cycles associated with the ENSO frequency band. The MTM spectra of the coral growth rate record also reveal statistically significant periodicities (>90% C.I.) within 1.8–4.2 ENSO frequency band, and a relatively weak signal at 12.8 years. MEM analysis confirms the stability of above spectral peaks. Wavelet spectral analyses of the above time series reveal nonstationary localized modes of ENSO evolution corresponding to 2–7 years and higher order terms. Although matching periodicities are present in these records, cross-spectral analysis of IRF and NINO3 temperature records exhibits significant coherency (>80% CI) only at periods 5.4 years and 2.7 years, suggesting the significant role of ENSO dynamics in organizing the subtle Indian monsoon at these frequencies. These results may provide significant implication for the modeling of Indian monsoon.  相似文献   

14.
A previous application of extreme-value statistics to the first, second and third largest geomagnetic storms per solar cycle for nine solar cycles is extended to fourteen solar cycles (1844–1993). The intensity of a geomagnetic storm is measured by the magnitude of the daily aa index, rather than the half-daily aa index used previously. Values of the conventional aa index (1868– 1993), supplemented by the Helsinki Ak index (1844–1880), provide an almost continuous, and largely homogeneous, daily measure of geomagnetic activity over an interval of 150 years. As in the earlier investigation, analytic expressions giving the probabilities of the three greatest storms (extreme values) per solar cycle, as continuous functions of storm magnitude (ad), are obtained by least-squares fitting of the observations to the appropriate theoretical extreme-value probability functions. These expressions are used to obtain the statistical characteristics of the extreme values; namely, the mode, median, mean, standard deviation and relative dispersion. Since the Ak index may not provide an entirely homogeneous extension of the aa index, the statistical analysis is performed separately for twelve solar cycles (1868–1993), as well as nine solar cycles (1868–1967). The results are utilized to determine the expected ranges of the extreme values as a function of the number of solar cycles. For fourteen solar cycles, the expected ranges of the daily aa index for the first, second and third largest geomagnetic storms per solar cycle decrease monotonically in magnitude, contrary to the situation for the half-daily aa index over nine solar cycles. The observed range of the first extreme daily aa index for fourteen solar cycles is 159–352 nT and for twelve solar cycles is 215–352 nT. In a group of 100 solar cycles the expected ranges are expanded to 137–539 and 177–511 nT, which represent increases of 108% and 144% in the respective ranges. Thus there is at least a 99% probability that the daily aa index willAlso Visiting Reader in Physics, University of Sussex, Palmer, Brighton, BN1 9QH, UK  相似文献   

15.
Maximum Entropy Spectral Analysis and Multiple Regression Analysis of the 200 year series (1781–1980) of the change in L.O.D. (Length of Day) revealed significant peaks atT=21, 32, 50, 63 and possibly 120 years. The periodsT=22 and 44 years seem to be stable over 200 years.  相似文献   

16.
A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977–1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5–1.0 °C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño – Southern Oscillation (ENSO) events of 1982–1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific Warm Pool ocean–atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian–Australian monsoon cycle. Sudden cooling of SSTs by 1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales.  相似文献   

17.
The lysosomal membrane destabilization and the metallothionein content in the digestive gland cells of mussels (Mytilus galloprovincialis Lam.), collected along the east coast of the North Adriatic (Istrian and Kvarnerine coast, Croatia), were examined over a period of four years (1996–1999). The lysosomal membrane stability, as a biomarker of general stress, showed that the membrane labilization period in mussels from polluted, urban- and industrial-related areas was significantly decreased (p<0.05) when compared to mussels from control, clean sea water sites. In the harbour of Rijeka, the most contaminated site, the lysosomal membrane stability was reduced by more than 70% compared to the control. This method also proved to be a useful biomarker for detection of additional stress caused by short-term hypoxia that occurred once during this study inside the polluted and periodically quite eutrophic Pula Harbour. The concentration of metallothioneins in the mussel digestive gland, as a specific biomarker of exposure to heavy metals, did not reveal significant differences (p<0.05) between sites covered by this study.  相似文献   

18.
Geopotential values W of the mean equipotential surfaces representing the mean ocean topography were computed on the basis of four years (1993 - 1996) TOPEX/POSEIDON altimeter data: W = 62 636 854.10m 2 s –2 for the Pacific (P), W = 62 636 858.20m 2 s –2 for the Atlantic (A), W = 62 636 856.28m 2s–2 for the Indian (I) Oceans. The corresponding mean separations between the ocean levels were obtained as follows: A – P = – 42 cm, I– P = – 22 cm, I – A = 20 cm, the rms errors came out at about 0.3 cm. No sea surface topography model was used in the solution.  相似文献   

19.
Using the periodicities obtained by a Maximum Entropy Spectral Analysis (MESA) of the Arosa total ozone data (CC) series for 1932–1971, the values predicted for 1972 onwards were compared with the observed values of the (AD) series. A change of level was noticed, with the observed (AD) values lower by about 7 D.U. Also, the matching was poor in 1980, 1981, 1982. In the monthly values, the most prominent periodicity was the annual wave, comprising some 80% variance. In the 12 month running averages, the annual wave was eliminated and the most prominent periodicity wasT=3.7 years, encompassing roundly 20% variance. This and other periodicities atT=4.7, 5.4, 6.2, 10 and 16 years were all statistically significant at a 3.5a priori i.e., 2a posteriori level. However, the predictions from these were unsatisfactory, probably because some of these periodicities may betransient i.e., changing amplitudes and/or phases with time. Thus, no meaningful prediction seem possible for Arosa total ozone.  相似文献   

20.
The characteristics of ionospheric scintillations at Rajkot in the equatorial anomaly crest region in India are described for the years 1987–1991 by monitoring the 244-MHz transmission from the satellite FLEETSAT. This period covers the ascending phase of solar cycle 22. Scintillations occur predominantly in the pre-midnight period during equinoxes and winter seasons and in the post-midnight period during summer season. During equinoxes and winter, scintillation occurrence increases with solar activity, whilst in summer it is found to decrease with solar activity. Statistically, scintillation occurrence is suppressed by magnetic activity. The characteristics observed during winter and equinoxes are similar to those seen at the equatorial station, Trivandrum. This, coupled with the nature of the post-sunset equatorial F-region drift and hF variations, supports the view that at the anomaly crest station, scintillations are of equatorial origin during equinox and winter, whilst in summer they may be of mid-latitude type. The variations in scintillation intensity (in dB) with season and solar activity are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号