首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
海泡石是一种应用广泛的纤维状富镁硅酸盐黏土矿物,主要成分为硅和镁,伴有铝钾钠等杂质,测定海泡石主量成分含量对于矿物性能的综合评价具有重要意义。海泡石主量元素分析通常采用经典化学法,样品碱熔处理后使用容量法、光度法、原子吸收光谱法测定,操作繁琐,耗时长,且无法同时测定钾钠。本文建立了一种氢氟酸-硝酸-高氯酸敞口酸溶样品,ICP-OES测定海泡石中氧化铝等主量成分的方法。对氢氟酸的用量进行了优化,选择Al 396.153nm、Ti 334.940nm、K 766.490nm、Na 589.592nm、Ca 422.673nm、Mg 285.213nm、Fe 238.204nm作为分析谱线,采用轴向观测方式进行测量。由于海泡石中的镁含量较高,用ICP-OES测定时存在基体效应,通过配制系列高镁混合标准溶液以匹配基体。ICP-OES法同时测定铝钛钾钠钙镁铁各元素标准曲线线性相关系数均大于0.9990,方法检出限为0.53~3.25μg/g,测定结果的相对标准偏差(RSD,n=10)为0.66%~5.65%,各元素回收率为95.3%~108.5%。本方法采用的酸溶前处理方式较碱熔操作更加简单,测定结果与经典化学方法所得结果吻合较好,能够满足海泡石样品的分析需求。  相似文献   

2.
粉煤灰中镓元素含量为12~230μg/g,测定粉煤灰中的镓对实现粉煤灰高附加值利用具有重要的意义。传统敞口酸溶法作为样品的预处理方法存在局限性,如需使用大量氢氟酸,对分析仪器腐蚀大,溶样时间长,在开放容器中易造成元素损失和环境污染。微波消解法具有消解完全、元素损失量少、消解时间短等优点,可以有效解决酸溶法的不足。本文选取内蒙古某电厂采集的粉煤灰,采用硝酸-氢氟酸-盐酸-高氯酸微波消解法对粉煤灰样品进行预处理,电感耦合等离子体发射光谱法(ICP-OES)测定元素含量。结果表明:使用硝酸-氢氟酸-盐酸-高氯酸(5∶1∶5∶1),消解温度190℃,消解时间30min,微波功率1400W时,镓被浸出完全。方法检出限为0.004mg/L,相对标准偏差(RSD)为1.7%,加标回收率为95.1%~100.9%。本方法在体系中引入盐酸,减少了氢氟酸的用量,显著缩短了除氟时间,降低了对分析仪器的损害,且操作方便,可应用于粉煤灰中微量元素镓的测定。  相似文献   

3.
张晶 《化工矿产地质》2013,(2):111-115,124
使用王水溶矿-电感耦合等离子体发射光谱法同时测定铜铅锌矿石中的铜铅锌。用国家一级标准物质GBW07233(铜矿石成分分析标准物质)、GBW07236(铅矿石成分分析标准物质)、GBW07237(锌矿石成分分析标准物质)和GBW07286(铜铅锌矿石成分分析标准物质)进行验证,测定值与标准值相符,结果准确可靠。方法操作简单,分析快速,提高了分析大批量样品的工作效率。  相似文献   

4.
湖南香花岭矿区是南岭地区东西向构造-岩浆-成矿带的重要组成部分,矿区内成矿地质条件非常优越,以矿床类型多、矿产种类复杂而著称,其中锡铅锌矿床是该矿区南岭成矿带非常重要的多金属矿床,赋存的矿石类型主要以锡石-硫化物型锡矿石、锡铅锌矿石、硫化物型铅锌矿石为主,为了进一步研究区域成矿条件、矿床地质特征、元素赋存状态及有色金属矿产综合利用,准确测定锡、铅、锌有色金属元素的含量非常必要。湖南香花岭矿区锡铅锌矿床中锡、铅、锌元素的平均品位都为百分含量,且锡本身是一种难分解元素,因此,常规的酸溶很难将高含量的锡、铅、锌元素分解完全。针对香花岭矿区锡铅锌矿床样品的特殊性,本文建立了碱熔-电感耦合等离子体发射光谱同时测定湖南香花岭矿区锡铅锌矿床中锡铅锌的分析方法:(1)优化了碱熔试剂选择、试剂用量、碱熔温度、碱熔时间等实验前处理及等离子体激发条件、元素谱线、扣背景位置等仪器测定条件,在比较氢氧化钠、无水碳酸钠和过氧化钠3种熔剂对分析结果影响的基础上,选择以4.0g过氧化钠作为熔剂,在750℃下恒温熔融试样20min,约30mL沸水浸提后加入20mL浓盐酸酸化,保证样品分解完全;(2)以空白碱熔酸化溶液为...  相似文献   

5.
采用王水溶解锑矿石常出现溶矿不彻底、提取过程中锑水解的问题,导致测定结果偏低;虽然原子荧光光谱法广泛应用于锑的测定,但是该方法由于仪器线性范围窄,对于高含量锑(5%)的测定容易引入较大稀释误差。本文对样品采用氢氟酸-硝酸-盐酸混合酸溶后,在提取过程中加入酒石酸与锑络合,充分抑制了锑的水解。实验结果表明:采用氢氟酸、硝酸、盐酸混合酸体系的溶矿方式,能够有效分解矿石中的硅酸盐组分,使溶解更加彻底,锑的测定结果优于王水溶矿,且检出限更低(1.10μg/g);通过酒石酸与锑的络合及盐酸对锑水解的抑制,锑的测定结果优于王水介质及盐酸介质的结果,且方法精密度(RSD,n=6)为0.11%~1.11%,较其他介质更稳定。在ICP-OES分析中通过对锑元素分析谱线的优选,可以获得更宽的线性范围,从而实现了对较高含量锑的准确测定。本方法能快速、有效溶解锑矿石并避免锑元素水解,经国家一级标物验证,所得结果与认定值相符,适用于分析锑矿石中含量范围在0.7%~40%的锑。  相似文献   

6.
高含量、微量和痕量水平锑的测定已有可靠的分析方法;但对于低含量锑的测定,现有的容量法分析效率较低,操作步骤不易掌握;且原子荧光光谱法对于批量样品中锑的高低含量差异存在记忆效应,分析精密度差,准确度不高。电感耦合等离子体发射光谱法(ICP-AES)较好地弥补了原子荧光光谱法、原子吸收光谱法、容量法等不能解决的问题。本文建立了金锑矿和锑矿石中、低含量锑的分析方法,样品经氢氟酸-硝酸-高氯酸溶解,硫酸助溶,在20%盐酸介质中,用ICP-AES在波长217.5 nm处进行测定。方法检出限为30.0 μg/g,方法精密度小于5%。国家标准物质的测定值与标准值吻合,不同含量的实际样品的测定值与硫酸铈容量法或原子荧光光谱法的测定值基本吻合。本方法适用于锑含量在0.05%~5%范围的矿石样品分析。  相似文献   

7.
由于钨在酸性介质中极易发生水解生成水合三氧化钨,通常将钨矿石样品碱熔后采用重量法、光度法等传统方法进行测定,但这些方法操作繁琐,称样量较大(0.1~0.5 g)。本文采用封闭压力酸溶分解样品,钨矿石样品在170℃密闭20 h,然后迅速溶解于10%氢氟酸和5%浓硝酸的混合酸中,使钨形成稳定的易溶解的六价配合物,用耐氢氟酸进样系统的电感耦合等离子体光谱仪测定其中钨的含量,方法精密度为1.5%~6.4%(RSD,n=10),检出限为0.039~0.042μg/g。方法经钨矿石国家标准物质验证,测定值与标准值一致;与分光光度法对照,测定结果吻合。本方法有效地解决了钨在酸性介质中极易水解的问题,溶样时间相对较短(20 h),无需进行赶酸、复溶等步骤,操作简单,可满足钨含量在0.015%~50%范围的钨矿石的日常分析要求。  相似文献   

8.
当前土壤中硫元素的测定方法主要是X射线荧光光谱法和燃烧法,上述两种方法分析速度慢,对高、低含量样品的分析精度较差,难以满足大批量样品快速、准确分析的要求。为提高分析速度和结果的准确度,本文建立了用盐酸-硝酸-氢氟酸-高氯酸(四酸)溶解土壤样品,电感耦合离子体发射光谱法测定硫的方法。通过考察王水消解、王水水浴消解和四酸消解的溶样效果,测定结果表明采用四酸能更好地溶解土壤样品中的硫。方法检出限为10μg/g,测量范围为33.3~50000μg/g,相对标准偏差为0.47%~4.05%。本方法简单快速,准确度高,已经过数千件实际样品验证,在不增加分析成本的情况下,一份溶液还可以同时测定钾钠钙镁铁锰铍锂镧铈钪钒钴镍钛等元素,适合在地质行业推广应用。  相似文献   

9.
测试地质样品中的硫含量,以电感耦合等离子体发射光谱法(ICP-OES)和燃烧-红外吸收光谱法应用最为广泛。ICP-OES法灵敏度高、稳定性好,但受样品预处理和基体干扰的影响较大;燃烧-红外吸收光谱法便捷高效,但受结晶水红外吸收干扰,分析硫含量低的样品稳定性较差。本文采用5种酸溶方式处理样品ICP-OES测定硫含量,同时采用燃烧-红外吸收光谱法测定低中高含量的硫,综合比较了两类方法的检出限、检测范围、精密度和准确度、分析效率等,明确了各方法的适用范围。实验中确定了燃烧-红外吸收光谱法最佳测试条件为:称样量0.0500g,燃烧时间25s,分析时间40s,氧气流量4.0L/min;通过标准物质验证,该方法检出限为10×10-6,检测范围为10×10-6~470000×10-6,相对标准偏差(RSD) < 6%(n=12),相对误差绝对值小于8%。实验结果表明,ICP-OES分析效率高,但是样品处理时间长,检测范围不如燃烧-红外吸收光谱法宽;燃烧-红外吸收光谱法采用固体直接进样,成本低,用高氯酸镁作为干燥剂可解决结晶水红外吸收干扰问题。总体上,ICP-OES法适用于分析硫含量低的样品或作为测试结果佐证的手段,可实现多元素联测;批量样品或基体类型复杂的样品宜采用燃烧-红外吸收光谱法测试,更加便捷。  相似文献   

10.
准确测定煤炭中的镓、锗和铟为煤炭中稀散元素的地球化学勘查提供了重要依据,对稀散金属的综合利用具有重要的经济意义。采用现有的分析方法处理煤炭样品时,由于镓、锗和铟灰化温度不同,而锗的灰化条件严格,测定结果受灰化温度影响大,因此三元素不能同时进行前处理和测定。本文通过试验优化了煤炭中镓、锗、铟的最佳灰化温度为625℃;采用硝酸-硫酸-氢氟酸溶解灰分,8 mol/L硝酸进行复溶,避免了锗的挥发损失;通过优化仪器工作条件和干扰实验,以103Rh为内标元素,选择71Ga、74Ge和115In作为测定同位素,消除了各元素的干扰,建立了电感耦合等离子体质谱法同时测定煤炭中镓、锗和铟的分析方法。结果表明:镓、锗和铟的标准曲线线性相关系数均在0.9999以上,三元素检出限分别为0.004、0.003、0.002μg/L,精密度为1.17%~3.15%,加标回收率为96.6%~102.0%。应用本方法分析标准物质GBW07363、GBW07457和GBW07428的测定值与认定值相符。与传统的分光光度法和原子吸收光谱法比较,本方法操作更为简便快速,具有更低的测定下限,并且可以多元素同时测定。  相似文献   

11.
矽卡岩型铜多金属富矿石是西藏特有矿产,具有成矿元素多样且含量普遍较高的特点,矿物类型主要为硫化物型,成矿元素有Cu、Pb、Zn、Fe、Ag、Bi、Cd、Co等。采用湿法处理此类样品时常因银、铅等元素含量较高出现难溶解、易沉淀现象,导致测定结果偏低。本文采用盐酸预处理、硝酸-氢氟酸-高氯酸溶矿体系,能有效除去样品中的硫,样品分解效果好,选择稀释倍数为1000、溶液介质为10%盐酸,样品溶液不会产生沉淀,采用电感耦合等离子体发射光谱法测定各待测元素均可获得较好的准确度、精密度。方法测定范围为:Cu 0.0056%~20.0%,Pb 0.0087%~20.0%,Zn 0.0031%~20.0%,Fe 0.0090%~20.0%,Ag 5.40~3000μg/g,Bi 10.8~5000μg/g,Cd 0.69~5000μg/g,Co 2.09~5000μg/g。用国家标准物质进行验证,方法准确度小于5.40%,精密度(RSD,n=11)小于4.41%。该方法具有前处理流程简单、分析速度快、同时测定元素多、线性范围宽等优点,经实际样品测试与不同方法分析数据吻合。  相似文献   

12.
地热水中的硫化物(H_2S、HS~-和S~(2-))通常受到硫酸根、亚硫酸根、硫代硫酸根等硫元素的共存干扰,并且硫化物具有热、光、氧不稳定性,在水样保存、前处理、标准溶液配制等环节影响着测试的准确度和精密度。本文在现场采集的地热水水样中加入乙酸锌及氢氧化钠,使硫化物形成硫化锌沉淀而与溶液分离,将此沉淀溶于双氧水和逆王水,使低价态的S2-氧化成稳定的SO_4~(2-),选择易于纯化且性质稳定的硫酸钠配制硫标准储备液,以182.624 nm谱线作为硫元素分析谱线,应用电感耦合等离子体发射光谱法测定出地热水样中的硫化物含量。硫的浓度在0.1~100 mg/L范围内与其发射强度呈线性(相关系数为0.9994);方法检出限为0.009 mg/L,相对标准偏差(n=11)低于1.80%,实际水样中硫化物的加标回收率介于99.0%~103.0%。与前人相关测试方法相比,本方法的技术指标具有优势。  相似文献   

13.
稀有多金属矿各类选矿样品中同一元素的含量相差较大,且同一样品中各元素的含量也有较大差异,如铌钽锂铍在尾矿和原矿中的含量只有几十至几百!g/g,而在精矿中的含量达到百分之几至百分之几十,伴生元素如钾、钠在不同样品中也有较大差异。应用敞口酸熔-电感耦合等离子体发射光谱法(ICP-OES)测定铌钽锂铍等元素通常采用三酸或四酸分解样品,多是测定尾矿、原矿及部分中矿样品中较低含量的铌钽锂铍,且同一测定体系中只测定了一种或两种元素。本文采用氢氟酸-硝酸-盐酸-高氯酸-硫酸分解样品,以3~4滴氢氟酸+5%硫酸+5%过氧化氢提取体系替代常规的有机酸(酒石酸等)提取体系,实现了应用ICP-OES同时测定稀有金属矿选矿试验各阶段产品中不同含量的铌钽锂铍钾钠铷铁钛等元素。各元素的谱线强度在0~500μg/mL浓度范围内呈良好的线性关系,相对标准偏差为0.37%~4.77%(n=6)。该方法提高了选矿全流程样品中各类元素的分析效率,已在选冶试验流程样品分析中得到了应用。  相似文献   

14.
胡璇  石磊  张炜华 《岩矿测试》2017,36(2):124-129
应用电感耦合等离子体发射光谱法(ICP-OES)测定高硫铝土矿(硫含量≤8%)中的硫时,由于硫存在-2、+4和+6等多种价态,常用的酸溶法和碱熔法处理高硫铝土矿时往往无法完全氧化硫而导致硫测定结果偏低。本文用过氧化钠熔融、热水浸取和盐酸酸化提取高硫铝土矿中的硫,使用基体匹配法绘制校准曲线补偿铝和钠对硫测定的光谱干扰,以S182.034 nm(184 nm)作为分析谱线,采用ICP-OES对硫进行测定。结果表明:3 g过氧化钠在700℃下熔融10 min,可以较好地氧化高硫铝土矿中的硫;校准曲线的线性相关系数为0.9999,方法检出限为0.025μg/m L,相对标准偏差(RSD,n=6)小于5%;与碳硫仪的测定结果相比较,两种方法无显著性差异。本方法溶样彻底,无样品损失,为今后实现应用ICP-OES同时测定高硫铝土矿中的硫和其他元素奠定了基础。  相似文献   

15.
有效铝、活性硅是判定三水铝土矿质量的重要指标,这两项指标的测定通常采用微波消解电感耦合等离子体发射光谱法(ICP-OES)。该方法首先测定出消解试液中的铝(即有效铝),再将剩余的残渣酸化溶解,进而测定出硅(即活性硅)。然而,由于消解试液不易澄清和残渣酸溶不完全,往往导致结果的重现性较差。本文对此方法作一改进,将消解的试液酸化加热,以钴为内标,采用ICP-OES同时测定出溶液中的活性铝和活性硅,然后间接计算出溶液中的有效铝。方法精密度(RSD,n=13)小于3%,回收率为97.0%~102.6%,用国际标准物质验证的测定结果与标准值吻合。本方法解决了消解后的溶液不易澄清和剩余残渣酸溶不完全的问题,克服了基体效应和仪器波动对测定结果的影响,能同时测定出活性铝和活性硅,并且提出的活性铝的概念可应用于三水铝土矿的综合评价和氧化铝生产工艺的调整。  相似文献   

16.
过渡金属Cu、Co、Ni、Zn、Pb等及贵金属元素(铂族元素和Au、Ag)高度富集在硫化物中,尤其是富集在岩浆硫化物中,常形成具有工业开采价值的矿产,因而硫化物矿物具有重大的经济价值。而硫化物矿种类多,不同类型硫化物矿中Ag、Cu、Pb、Zn含量高低不同,有些被强酸分解不完全,产生沉淀,导致检测结果波动性较大、精密度偏低。本文针对含黄铁矿、铅和铜分别以方铅矿和黄铜矿形式存在的较难溶的硫化物矿,在矿样中先加盐酸加热除硫后,再用硝酸-氢氟酸-高氯酸三种强酸分解,以新配制的王水提取,使该类样品获得了理想的分解效果,特别是对银、铅含量较高的样品分解效果改善较显著。试液用火焰原子吸收光谱和电感耦合等离子体发射光谱都能准确测定Ag、Cu、Pb、Zn,两种方法的相对误差在±2.32%以内,测定值基本一致,相对标准偏差(RSD,n=12)均小于3.5%,四个元素的检出限均低于0.0090!g/m L,低于文献检出限。  相似文献   

17.
分析地质样品中钪的含量,国家标准方法是采用过氧化钠熔融,过滤分离后电感耦合等离子体发射光谱法(ICP-AES)测定,过程繁琐,样品前处理引入大量盐类且分析结果精度不高,不能适应当前矿产勘查快速准确检测的需要。本文建立了采用硝酸、盐酸、高氯酸和氢氟酸处理样品,ICP-AES测定地质样品中钪的分析方法。选择5%盐酸为溶液介质,干扰元素含量低于2%时运用干扰因子校正法(IEC)优化谱线强度以及适量稀释溶液降低基体效应,提高了分析的准确度和精密度。方法测定范围宽(0.00003%~10%);检出限为0.0016 μg/mL,优于国家标准方法检出限(0.004 μg/mL);方法回收率为97.0%~99.3%,方法精密度(RSD,n=6)为0.4%~2.3%;国家一级标准物质的测定值和标准值吻合,分析结果准确可靠。虽然酸溶法不能完全溶解所有类型的地质样品,但对区域环境条件要求不高、简便快捷,本法以酸溶法替代碱熔法处理样品,避免了待测组分和干扰物质的引入,对ICP-AES测定钪的稳定性有较大改善,适用于批量快速分析地质样品中的钪元素。  相似文献   

18.
准确、快速测定多金属矿中的主次量成分,对矿产资源的综合利用具有十分重要的意义,但针对锡、钨、钛三种元素等难以被酸溶解的元素,选择适宜的样品前处理方法和电感耦合等离子体发射光谱(ICP-OES)技术结合起来,有利于提高准确度和测试效率。本文以过氧化钠为熔剂,样品经高温熔融,盐酸+酒石酸+过氧化氢混合酸提取,结合内标法建立了测定多金属矿中铜铅锌以及锡钨钛等15个主次量成分的分析方法。实验优化了各元素的分析谱线和背景校正模式,系统研究了坩埚、熔剂的选择、铝元素和内标元素的影响,获得方法检出限为7~995μg/g,加标回收率为90.3%~105.0%,精密度(RSD,n=12)为0.8%~6.6%。本方法针对5种不同类型的典型多金属矿,具有不分矿种、前处理步骤相同、多成分同时测定和测试范围宽(40μg/g~25%)的技术特点,尤其对于矿种类型不确定、测定范围在百分含量以上的多金属矿具有优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号