首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
多核学习算法在高光谱图像分类领域占据着十分重要的地位。与灰度图像、全色图像和多光谱图像等相比,高光谱图像因具有很强的分类识别能力等多方面优势而被广泛应用。为进一步提高高光谱图像的分类精度,促进多核学习算法在高光谱图像分类中的应用,本文对多核学习算法及其在高光谱图像分类中的应用进行了总结。首先在回顾核方法的基础上阐述了多核学习框架,其次对多核学习核函数组合方法进行综述,随后根据求解多核学习组合系数方法的不同将多核学习分为两类:固定规则的多核学习算法和基于优化的多核学习算法,并对两类多核学习算法在高光谱图像分类中的应用进行综述,总结各类算法在高光谱图像分类的应用进展。同时,为了便于研究者对多核学习算法及其在高光谱图像分类问题中的应用研究,本文对常用核函数和高光谱图像数据集进行了整理归纳。最后,讨论了多核学习算法在高光谱图像分类研究方面的不足,并对未来研究方向进行了展望,以期为该领域的研究和应用提供参考。  相似文献   

2.
针对高光谱遥感图像分类中标记样本难获取的问题,提出了一种基于同质区和迁移学习的新型半监督分类方法。首先对高光谱图像进行分割得到高纯度的同质分割斑块,获取大量扩展训练样本。并在此基础上引入迁移学习,将扩展训练样本作为源域,剩余未标记样本作为目标域,实现多次迁移,从而减少同一幅图像上各地物的分布差异,并保留其各自的内部属性。实验结果表明,该方法是一种有效的高光谱图像半监督分类方法。  相似文献   

3.
卷积神经网络在进行高光谱图像分类时,往往需要设置较多的参数,因此其计算效率受到很大影响。基于混合卷积神经网络模型,本文利用全局平均池化层代替原有的全连接层,将卷积层输出的多个特征图映射为一个特征点,并将多个特征点构成一维向量,形成改进后的混合2D-3D卷积神经网络模型;最后,对改进后的模型分别在IP(IndianPines)数据集、PU(PaviaUniversity)数据集及Botswana数据集上进行测试。结果显示,总体分类精度分别达到99.64%、99.98%、99.91%。这表明在大量减少参数的条件下仍具有较好的分类性能。  相似文献   

4.
残差网络是近几年提出的一种新型深度卷积网络,通过增加网络深度提高分类的准确率,也解决了网络退化问题。基于残差学习原理,设计了针对高光谱遥感图像分类的光谱-空间残差网络模型。首先,将原始高光谱遥感数据三维立方体输入网络模型,并使用特定的卷积核对光谱特征进行降维;然后,利用光谱残差模块和空间残差按模块分别且连续地学习光谱和空间特征;最后,对提取到的特征进行池化操作并分类。此外,为规范训练数据和防止过拟合,学习过程中使用了批量归一化和dropout的方法。所设计网络模型在Indian Pines和Pavia U数据集上进行了验证实验,结果表明,所提方法有效地缓解了网络退化的问题,且在分类精度上也高于支持向量机、卷积神经网络等现有算法。  相似文献   

5.
高光谱图像的众多波段为地物分类提供了充分的特征信息,同时也为如何有效利用这些特性带来难题。为了充分利用高光谱图像的光谱信息实现地物目标的精确分类,根据其像素光谱曲线所呈现出的多峰特性,提出一种基于加权指数函数模型(Weighted Exponential Function, WEF))的高光谱图像分类方法。首先,采用WEF建立像素光谱曲线的理想模型,其中WEF模型由多个具有不同权重的指数函数相加而成。由于该模型中参数较多,导致参数求解较为困难。因此,为简单起见固定所有像素WEF模型中的峰值位置,并将由所有峰值位置构建矢量集。然后,根据最小二乘原理求解WEF模型的参数,以拟合光谱曲线。利用求得的参数集代替光谱测度矢量作为像素特征。最后,采用模糊C均值(Fuzzy C-means, FCM)算法实现图像分类。为了验证提出方法的可行性和有效性,分别以提出的分类方法、基于主成分分析(Principal Component Analysis, PCA)的分类方法、基于最小噪声分离(Minimum Noise Fraction, MNF)的分类方法和以光谱测度矢量为分类特征的FCM方法对Salinas和PaviaU图像进行分类实验,并据此对实验结果进行定性和定量评价。在Salinas图像中提出的分类方法比其它方法的分类精度从51%提高到了60%,在PaviaU图像中分类精度从43%提高到了51%。此外,提出的分类方法在降低了高光谱图像数据量的同时,保留了高光谱图像丰富的光谱信息。  相似文献   

6.
混合像元是遥感影像中普遍存在的现象,对此,本文提出基于加权后验概率的支持向量机进行影像混合像元分解。该分类算法可判定端元种类的同时得到每种地物的后验概率,从而进行非线性模型的混合像元分解。由于加权后验概率的支持向量机分类算法能够减少分类器受土地覆盖类型模糊样本点的干扰,因此,改善了非线性混合像元分解模型的精度。首先,由样本点计算得到核函数参数值,然后,计算影像中每一种土地覆盖类型的后验概率,将其作为各个两类支持向量机分类器的权系数并求得多类后验概率值,确定影像每一种土地覆盖类型并得到丰度值。本文采用TM多波段遥感影像验证该方法的可行性,实验区位于我国东北部的大兴安岭中北段地区,土地覆盖类型包含农田、居民地、水体、荒地等。将本文提出的混合像元分解方法结果与标准支持向量机模型分解的结果对比表明,以加权后验概率的支持向量机遥感影像混合像元分解方法精度优于标准支持向量机模型。  相似文献   

7.
基于支持向量机的遥感图像分类方法   总被引:19,自引:0,他引:19  
为了提高遥感图像分类的精度,弥补传统最大似然分类方法所固有的分类时样本不足的缺陷,提出了一种基于支持向量机、光谱特征和纹理特征相结合的遥感图像分类方法。采用ETM数据,按照其所提方法进行了具体分类实验,并将实验结果与最大似然法分类的结果进行了比较分析。结果表明,利用基于支持向量机的方法进行遥感图像分类,精度明显优于最大似然法分类的精度。利用光谱特征与纹理特征相结合进行分类比单纯运用光谱特征进行分类效果要好。  相似文献   

8.
本文提出一种面向对象的像元级分类方法(混合模型),并将其与单纯的以像元和面向对象的两种方法同时应用于分辨率分别为30m和0.5m的环境星CCD数据和航空影像进行对比分析。分类结果中不同地物类别之间光谱可分性的大小,很大程度上可反映分类结果的可靠性。若地物类型之间的光谱差异大,说明分类方法能将光谱差异大的地物很好地划分,显示出较可靠的分类结果;相反,如果分类结果中地物类型光谱差异小,则反映分类方法不够可靠。鉴此,本文通过计算分类结果中不同类别所对应的原始遥感影像像元之间的J-M(Jeffries-Matusita Distance)距离来度量分类结果中地物之间的光谱可分性,并用J-M距离比较分析了3种图像分类方法对2种不同分辨率影像的分类结果中各个类别之间的光谱可分性的变化。分析结果表明,混合模型不但能够得到较连续的分类结果,同时能够保持分类结果中类别之间的可分性。本文对分类结果进行了精度验证,结果发现混合模型的分类精度较其他2种方法要高。2种不同分辨率的遥感影像分析结果得到相同的结论,表明该模型适用于中分辨率和高分辨率影像。  相似文献   

9.
机器学习方法在高光谱遥感影像分类中广泛应用,本文使用新型的极限学习机(Extreme Learning Machine,ELM)进行高光谱遥感影像分类,针对ELM中正则化参数C和核参数σ,提出以萤火虫算法(Firefly Algorithm,FA)进行优化。首先,采用萤火虫算法进行高光谱遥感影像的波段选择,以便降低维数;然后,利用萤火虫算法以分类精度最大化为准则对ELM的参数组合(C,σ)进行寻优;最后,利用参数优化后的ELM分类器,对3个不同传感器的高光谱遥感影像进行分类。实验中将新型的萤火虫算法与遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)进行了对比,并将ELM的性能与支持向量机(Support Vector Machine,SVM)方法作对比。结果表明,FA优化方法优于传统的GA和PSO优化方法,ELM方法的效果在训练时间和分类准确率2个方面都优于SVM方法。实验说明,本文提出的方法具有较好的适用性和较优的分类效果。  相似文献   

10.
高光谱遥感影像的稀疏分类是当前遥感信息处理的研究热点。本文提出一种光谱与空间双重稀疏表达的高光谱遥感影像分类方法(WSSRC)。首先利用小波字典对光谱维进行稀疏表示,将光谱维稀疏分类转化到小波域稀疏分类;其次,考虑空间邻域地物光谱的统一性和差异性,对邻域内像元分别进行稀疏编码,并对编码进行累加聚合;然后,利用聚合后的稀疏编码构造线性分类器对高光谱影像进行分类;最后,通过2幅标准的高光谱影像数据验证了本文所提出的方法。实验结果表明,该方法能有效地提高影像的分类精度。  相似文献   

11.
高光谱遥感能以纳米量级宽度的窄波段及多达数百个的波段,对目标进行连续的光谱成像,但其海量数据及相邻波段高度相关造成的数据冗余却制约着它的应用.因此,对高光谱遥感影像分类须进行有效的处理、寻找最优特征,以增强地物的最大可分性.本文首先针对EO-4 Hyperion高光谱影像波段维数高,相关性强和数据量大等特点,利用独立成...  相似文献   

12.
建筑物立面是城市地物的重要组成部分,而移动激光扫描是获取城市地物三维信息的重要手段之一。本文提出了一种基于移动激光扫描点云的建筑物立面半自动提取算法。该方法首先构建研究区水平网格;然后计算局部点云几何特征,并且将特征投影到水平网格生成点云特征图像;接着基于支持向量机(Support Vector Machine,SVM)对建筑物立面网格进行粗提取;最后使用网格属性(形状系数、网格面积、最大高程)对粗提取结果进行过滤,并将结果反投影到三维空间中得到精确的建筑物立面。以卡内基梅隆大学的移动激光扫描点云进行试验后表明,本算法能够较好地提取出建筑物立面,提取精度为84%,召回率为90%,数据修正后精度为88%,召回率为91%。通过与现有算法对比,本文提出的算法具有较高精度。  相似文献   

13.
面向地理国情监测的变化检测与地表覆盖信息更新方法   总被引:1,自引:0,他引:1  
常态化地理国情监测能够全面、动态地掌握地理国情信息及其变化,为经济建设和社会发展提供数据基础。地理国情普查成果是按照统一规范标准、经过内业解译和外业核查形成的矢量数据。如何在普查成果的基础上,利用多时相遥感影像实现变化信息提取与更新是地理国情监测的关键。针对地理国情普查成果的特点与监测需求,以多时相遥感影像处理分析为基础,构建了针对地理国情监测的变化检测方法体系,提出了像元—对象结合的多时相影像变化检测、基于对象实体统计分析的变化识别方法,实现了综合地理国情普查成果和遥感影像的地理国情变化检测与数据更新。基于像元—对象结合的多时相影像变化检测首先根据传统的变化矢量分析法提取基于像元的变化检测结果,再以地理国情普查的矢量对象为统计单元计算对象内变化像元的比例,以此判断该矢量对象是否发生了变化,并根据变化像元的比例计算其变化强度。基于对象实体统计分析的变化检测方法直接以地理国情矢量为对象进行特征提取和差异构造,再将差异影像进行阈值分割得到基于地理国情对象的变化检测图。最后,根据变化检测结果,对变化区域进行面向对象分割,并从上一期未变化区域选取训练样本训练分类器模型以得到变化区域的地表覆盖类型,将变化区域与未变化区域结合得到更新后的地理国情矢量图。选取江阴市地理国情普查成果和两期高分辨率遥感影像进行试验,结果表明本文提出的方法在准确提取和解释变化区域的同时,明显提高了变化检测和数据更新的效率,可用于常态化地理国情监测。  相似文献   

14.
甘肃龙首山铀成矿带是中国内陆一条重要的铀成矿带。芨岭铀矿床是龙首山成矿带中典型的碱交代型铀矿床,蚀变种类繁多,且与铀矿化关系密切,利用航空高光谱技术可以从宏观上获取芨岭铀矿床地表蚀变、构造、岩性分布信息,为芨岭矿床及周边铀多金属矿产勘查提供依据。本文采用CASI/SASI/TASI航空高光谱遥感技术,对甘肃龙首山地区芨岭碱交代型铀矿区及周围地表出露的热液蚀变进行了研究,识别出了碱性长石、赤铁矿、透闪石、中铝绢云母、高岭石、石英(硅化)等与碱交代热液作用演化密切相关的蚀变矿物,并将蚀变矿物与构造、岩性等要素进行了综合分析。研究表明,碱性长石、透闪石、中铝绢云母和石英(硅化)等蚀变矿物分别代表了芨岭及周围地区碱交代热液作用过程中早期碱交代、中期中性交代、晚期酸性交代等不同演化阶段的热液蚀变作用;芨岭铀矿区碱交代热液作用的主要通道是区域不整合面、深大断裂、不同岩性接触带的复合体,马路沟铀矿控矿断裂的芨岭矿区段明显发育透闪石、中铝绢云母、硅化与碱交代作用相关的热液蚀变。根据芨岭铀矿床的航空高光谱遥感特征,提出了龙首山碱交代型铀矿找矿的主要预测判据。这些判据对龙首山的铀矿找矿新区预测和老矿点、异常点的新评价具有重要的意义。  相似文献   

15.
针对目前航空重力测量数据处理中常规搜索方法存在搜索速度慢、正确率低、适用性差的不足,提出以主测线点为搜索中心,采用一定宽度的搜索框对主副测线点进行搜索,将搜索到的主副测线上相邻测点组成线段,运用行列式方法精确求出交叉点及不符值的方法,即滑动窗口搜索法。从搜索时间和正确率两方面对滑动窗口搜索法进行分析,结果表明本文所提方法简单有效,能明显提高测线交叉点搜索效率。  相似文献   

16.
针对现有基于机载激光点云的建筑物重建方法自动化程度较低且建筑物外轮廓精度无法保证的问题,提出一种融合已有的高精度建筑物外轮廓测绘数据成果与机载雷达数据的建筑物重建方法。以及方法从建筑物点云数据获取、屋顶面分割、结构线检测、几何拓扑重建和模型生成的建筑物三维重建过程中的关键步骤。最后,通过实验验证各个步骤的有效性与可用性。  相似文献   

17.
相关反馈技术在提高图像检索性能方面发挥着重要作用,但图像检索过程中的相关反馈存在反馈次数过多,反馈效果不够理想等问题。为解决上述问题,提出一种贝叶斯和支持向量机相结合的反馈算法。实现方法是:用贝叶斯分类器对图像库进行分类,达到压缩图像库的目的,然后用支持向量机分类器对压缩之后的图像库进行分类,并反馈最终结果。研究结果表明,与支持向量机和贝叶斯算法相比,在很少的反馈次数下,该方法明显提高了反馈效果。  相似文献   

18.
本文以山西省霍西煤矿区为研究区,利用遥感和GIS方法对滑坡灾害的敏感性进行了数值建模与定量评价。利用交叉检验方法构建了径向基核函数支持向量机滑坡敏感性评价模型,并基于拟合精度对模型进行了定量评价;对各评价因子在模型中的重要性进行对比分析;基于空间分辨率为30m的评价因子,通过径向基核函数支持向量机模型获得了霍西煤矿区滑坡敏感性指数值,并利用分位数法将霍西煤矿区的滑坡敏感性分为极高、高、中和低4个等级。结果表明:拟合精度建模阶段和验证阶段分别为87.22%和70.12%;与滑坡敏感性关系最密切的5个评价因子依次是岩性、距道路距离、坡向、高程和土地利用类型;极高和高敏感区域分布了93.49%的滑坡点,面积占总面积的50.99%,是比较合理的分级方案。本研究不仅可以为研究区人工边坡调查和煤矿资源合理开采提供借鉴,对相似矿区的相关工作也具有参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号