首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The observations of the ACTIVE Project satellites in the interval of March 17–23, 1990 were analyzed for the purpose of studying the response of the outer ionosphere to the magnetic storm with SSC on March 20 at 22.43 UT. In particular, measurements of thermal plasma parameters were used, but VLF broadband measurements and data on energetic ion and electron fluxes in the range of 17.7–272 keV were also available. The results of this case study show that the observations in the morning sector at altitudes around 2000 km reflect well the state of the plasmasphere during enhanced activity, namely the depth to which the plasmasphere has been affected by enhanced magnetospheric convection. They also provide the possibility of monitoring the initial phase of recovery. The early evening observations of the plasma parameters in the outer ionosphere at altitudes of 500–1000 km indicate a distinct trough in electron concentration. In the dusk sector, the equatorward edge of this trough can be assumed to be the projection of the equatorial plasmapause. This, combined with the occurrence of electron temperature peaks and with the morning plasmapause position, enables one to judge whether the plasmaspheric bulge has formed and whether an inner plasmapause has occurred.  相似文献   

2.
Summary VLF quarter-gyrofrequency emissions, whose experimental characteristics differ from those of discrete plasmaspheric emissions usual during active times, have been observed by low-altitude Intercosmos 24 and Magion 2 satellites within the plasmasphere during periods of quieting geomagnetic activity. A new kind of instability is proposed which could lead to the production of these emissions. It is shown that quasi-electrostatic whistler waves can be generated in the eqquatorial region due to the fan instability, with maximum growth rate and spectral energy density in a frequency band below one half of the equatorial electron gyrofrequency. The observations of low-energy electrons and plasma waves in the equatorial region within or in the vicinity of the plasmapause, which could support our hypothesis experimentally, are discussed.  相似文献   

3.
Summary Direct measurements of the thermal plasma parameters in the topside ionosphere reveal variations of the plasmasphere boundary in the dusk sector. The ACTIVE satellite's near-polar orbits at altitudes of 500 – 1800 km around winter solstice 1989 were used to study the bulge region of the plasmasphere during intervals with different levels of geomagnetic agitation. The narrow, sharply defined trough in electron concentration corresponding to the plasmapause under quiet conditions situated at L = 6 – 7 moved to lower L-values with increasing geomagnetic activity. This narrow trough can be found in all main ion constituents. During periods of moderate geomagnetic activity, following the onset of a weak magnetic storm, a portion of the plasmaspheric bulge region was separated from the main plasmaspheric body. This can be seen in the outer ionosphere as an inner narrow trough at lower L-value. Troughs in light ions need no longer coincide with this in electron concentration. He+ is the most sensitive constituent reflecting the dusk sector plasmaspheric situation at this altitude.Dedicated to the Memory of Professor Karel P  相似文献   

4.
Situations when localized precipitation of energetic (E > 30 keV) protons and electrons, associated with the development of cyclotron instability in the magnetosphere, is recorded during one satellite pass are identified in the data of particle flux observations on the NOAA-12 low-orbiting satellite. Such events were observed only in the evening sector of the magnetosphere. This precipitation is compared with the data on the cold (E < 10 eV) plasma density obtained on the LANL geostationary satellites. The comparison showed that the precipitation of energetic particles is related to the presence of cold plasma with a density of 20–100 cm?3 in geostationary orbit in the evening sector of the magnetosphere. The conclusion has been made that the localized precipitation of energetic particles is generated at the edges of small-scale structures of cold plasma, forming the so-called “plasmaspheric tail,” i.e., the cold plasma region extending from the evening plasmapause toward the Sun.  相似文献   

5.
From the data on the cold plasma measurements onboard the INTERBALL-1 spacecraft (1995–2000), the plasmapause positions determined from the most frequently used formal criterion—a fivefold or higher decrease in plasma density with an increase in the L-shell by 0.5—and visually from the measured energy spectra of thermal protons have been analyzed and compared. The difference in the results of the both empiric techniques makes it possible to estimate the thickness of the boundary layer of the plasmasphere. The model of the Earth’s plasmasphere developed earlier by the authors (Verigin et al., 2012; Kotova et al., 2015) based on the theoretical expressions makes it possible to reconstruct the plasma distribution throughout the plasmasphere from the measurements along a single pass of the orbiter and to find the plasmapause position defined as the last closed stream line. Comparison of the plasmapause position obtained with empirical techniques to the position of this boundary calculated with physically based models of the plasma distribution in the plasmasphere has shown that the modeled position of the plasmapause approximately coincides with that determined from the formal criterion described above.  相似文献   

6.
Global plasmaspheric TEC and its relative contribution to GPS TEC   总被引:3,自引:0,他引:3  
The plasmaspheric electron content is directly estimated from the global positioning system (GPS) data onboard JASON-1 Satellite for the first time. Similarly, the ground-based GPS total electron content (TEC) is estimated using about 1000 GPS receivers distributed around the globe. The relative contribution of the plasmaspheric electron content to the ground-based GPS TEC is then estimated globally using these two independent simultaneous measurements; namely ground-based GPS TEC and JASON-1 GPS TEC. Results presented here include data from 3 months of different solar cycle conditions (October 2003, May 2005, and December 2006). The global comparison between the two independent measurements was performed by dividing the data into three different regions; equatorial, mid- and high-latitude regions. This division is essential as the GPS raypaths traverse different distances through the plasmasphere at different latitudes. The raypath length through the plasmasphere decreases as latitude increases. The relative contribution of the plasmaspheric electron content exhibits a diurnal variation that depends on latitude with minimum contribution (10%) during daytime and maximum (up to 60%) at night. The contribution is also maximum at the equatorial region where the GPS raypath traverses a long distance through the plasmasphere compared to its length in mid- and high-latitude regions. Finally, the solar cycle variation of plasmaspheric contribution is also reported globally.  相似文献   

7.
等离子体层已有数十年研究历史,但对其核心等离子体区域却一直没有一个相对准确的界限和模型定义.基于范阿伦辐射带卫星RBSP-A在2012年9月18日至2014年10月13日约两年的观测,我们统计研究了磁宁静期间核心等离子体层电子密度随磁地方时(MLT)及磁壳指数(L-value)的分布特征.发现了核心等离子体层电子密度在不同MLT条件下随L值的变化趋势几乎一致,但与以前的等离子体层经验模式计算的电子密度存在较大的偏差.在不同L值下电子密度随MLT的变化趋势也相差不大,而且随MLT存在明显的逐日和半日变化.最后我们获得了等离子体层电子密度随L值和MLT变化的经验公式.研究结果对空间等离子体层建模及研究具有重要的意义.  相似文献   

8.
The formation of a zone of energetic electron precipitation by the plasmapause, a region of enhanced plasma density, following energetic particle injection during a magnetic storm, is analyzed. Such a region can also be formed by detached cold plasma clouds appearing in the outer magnetosphere by restructuring of the plasmasphere during a magnetic storm. As a mechanism of precipitation, wave-particle interactions by the cyclotron instability between whistler-mode waves and electrons are considered. In the framework of the self-consistent equations of quasi-linear plasma theory, the distribution function of trapped electrons and the electron precipitation pattern are found. The theoretical results are compared with experimental data obtained from NOAA satellites.  相似文献   

9.
地球等离子体层顶与地磁活动的关系研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用IMAGE卫星EUV相机观测的等离子体层图像,并采用最小L算法反演磁赤道面等离子体层顶位置.文中选取了2000-2002年间的3579幅等离子体层图像,并反演得到了时间间隔为1 h的等离子体层顶位置数据库,包含48899个等离子体层顶位置数据.利用该数据库统计研究了等离子体层顶位形随地磁活动的变化特性.统计发现等离子体层顶高度依赖地磁活动,与地磁指数KpDst和AE均呈负相关,且等离子体层顶随地磁指数的变化趋势具有显著的MLT分布特性;亚暴活动对等离子体层顶演化的贡献在不同地磁活动期间有所不同,磁暴期间亚暴活动的贡献小,而地磁平静期亚暴的贡献大.本文研究工作为后续建立等离子体层顶模型和了解等离子体层顶的动态结构提供了重要研究基础.  相似文献   

10.
Summary Quarter-gyrofrequency plasmaspheric emissions with spectral properties differing from those of discrete plasmaspheric emissions, usual in active intervals, have been observed by low-altitude Intercosmos 24 and Magion 2 satellites during periods in which geomagnetic activity decreases. Their occurrence in satellite records shows very good correlation with simultaneously observed subauroral electron temperature enhancements and increase of electron temperature anisotropyT e being larger than T e . An analysis of the observed wave characteristics is given. Propagation of the emissions within the plasmasphere is discussed. It is shown that the region where they are observed at low altitudes can be closely connected along geomagnetic field lines with the equatorial region of their origin.  相似文献   

11.
Data collected from a GPS receiver located at low latitudes in the American sector are used to investigate the performance of the WinTEC algorithm [Anghel et al., 2008a, Kalman filter-based algorithm for near realtime monitoring of the ionosphere using dual frequency GPS data. GPS Solutions, accepted for publication; for different ionospheric modeling techniques: the single-shell linear, quadratic, and cubic approaches, and the multi-shell linear approach. Our results indicate that the quadratic and cubic approaches perform much better than the single-shell and multi-shell linear approaches in terms of post-fit residuals. The performance of the algorithm for the cubic approach is then further tested by comparing the vertical TEC predicted by WinTEC and USTEC [Spencer et al., 2004. Ionospheric data assimilation methods for geodetic applications. In: Proceedings of IEEE PLANS, Monterey, CA, 26–29 April, pp. 510–517] at five North American stations. In addition, since the GPS-derived total electron content (TEC) contains contributions from both ionospheric and plasmaspheric sections of the GPS ray paths, in an effort to improve the accuracy of the TEC retrievals, a new data assimilation module that uses background information from an empirical plasmaspheric model [Gallagher et al., 1988. An empirical model of the Earth's plasmasphere. Advances in Space Research 8, (8)15–(8)24] has been incorporated into the WinTEC algorithm. The new Kalman filter-based algorithm estimates both the ionospheric and plasmaspheric electron contents, the combined satellite and receiver biases, and the estimation error covariance matrix, in a single-site or network solution. To evaluate the effect of the plasmaspheric component on the estimated biases and total TEC and to assess the performance of the newly developed algorithm, we compare the WinTEC results, with and without the plasmaspheric term included, at three GPS receivers located at different latitudes in the American sector, during a solar minimum period characterized by quiet and moderate geomagnetic conditions. We also investigate the consistency of our plasmaspheric results by taking advantage of the specific donut-shaped geometry of the plasmasphere and applying the technique at 12 stations distributed roughly over four geomagnetic latitudes and three longitude sectors.  相似文献   

12.
A review is made of recent major advances in plasmaspheric research; important results have emerged from those concerning a variety of plasmasphere features. Both experiments and modeling efforts have progressed. A number of unknowns still persist, however, but research is underway toward their clarification. These clarifications are essential for obtaining a predictive capability of the near-Earth space weather in the plasmasphere region.  相似文献   

13.
14.
Based on theoretical models of the ionosphere and the plasmasphere, the ion composition variations in the plasmasphere and the plasmapause structure were studied depending on the choice of the distribution model of the magnetospheric convection electric field at low and high geomagnetic activity at the equinox and the December solstice. Based on the model calculations performed, the plasmapause shape and size during an increase and decrease in geomagnetic activity were studied. It was revealed that the size of the plasmasphere mainly depends on the magnetic local time (MLT) sector and the level of geomagnetic activity, and it greatly depends on the maximum universal time during the equinox. The Earth’s plasmasphere asymmetry is manifested in the noon-midnight and morning-evening directions. The analysis results of daily and seasonal variations in the ionic composition of the Earth’s plasmasphere at a moderate solar activity level show that there is a certain increase in the ion concentrations of H+ and He+ in the winter period probably due to an increase in the exospheric density at the summer to winter transition. The data obtained are in good agreement with satellite observations which makes it possible to use the model proposed to study the plasmasphere under different geophysical conditions.  相似文献   

15.
In the framework of a quasilinear theory we examine the interaction between thermal electrons and ion-cyclotron waves (ICW) in the outer plasmasphere of the earth. For this type of wave-particle interaction, a simplification of the quasilinear diffusion integral in a magneto-active plasma under plasmaspheric conditions is given. Under the assumption of a Maxwellian distribution of electrons we have calculated the collision frequency and the heating source as the electrons are scattered by ICW. The obtained values of intrinsic parameters of the outer plasmasphere may exceed greatly, accordingly, the Coulomb frequency of collisions and the heating source due to suprathermal electrons. ICW-heating causes the ionosphereward thermal flux to increase, and this must lead to an increase in electron temperature in lower-lying plasmaspheric regions and in the subauroral ionosphere. A quantitative estimation of the electron temperature for the hot zone, made in this paper, is consistent with available experimental data.  相似文献   

16.
美国利用IMAGE卫星的极紫外辐射(EUV)探测器对地球等离子体层进行了连续5年的遥感成像观测。由于IMAGE卫星数据是沿观测路径上的积分投影数据,并且存在地球“遮挡”、“阴影”、“数据缺失”等问题,无法直接利用传统的CT方法对等离子体层进行三维重建。本文利用地球磁场模型,基于地球等离子体层的物理性质,建立一个联系地球磁赤道面密度与投影数据的EUV成像模型,实现了从单个角度的EUV观测图像进行地球等离子层三维重构的方法。   相似文献   

17.
The plasmapause formation physical mechanisms are recalled: (i) the MHD convection mechanism, based on the original idea that the plasmapause coincides with the last closed equipotential (LCE) of the magnetospheric convection electric field or with the last closed streamline (LCS) of the equatorial plasma, and (ii) the interchange mechanism, which is based on peeling off the plasmasphere as a result of substorm associated enhancements of the night side convection velocity, leading to an enhanced centrifugal acceleration in the outermost layers of the plasmasphere. The plasmapause positions, predicted by these alternative theories, were numerically determined for two different magnetospheric empirical electric field models: (i) the Volland-Stern-Maynard-Chen (VSMC) and (ii) McIlwain E5D models, both of which are Kp-dependent. The predicted positions and overall shape of the equatorial plasmapause cross-sections are confronted to those derived from decades of whistler and satellite observations including the EUV observations during the substorm of June 27, 2001. It is found that the VSMC electric field model and the LCS plasmapause formation theory less correspond to whistler measurements and in-situ satellite observations than the E5D model and the interchange plasmapause formation mechanism. Published in Russian in Geomagnetizm i Aeronomiya, 2008, Vol. 48, No. 5, pp. 579–597. The article was translated by the authors.  相似文献   

18.
The projection of the plasmapause magnetic-field lines to low altitudes, where the light-ion chemistry is dominated by O+, tends to occur near the minimum electron density in the main (midlatitude) electron density trough at night. With increasing altitude in the trough, where H+ emerges as the dominant ion on the low-latitude boundary, we have found cases where the plasmapause field lines are located on the sharp low-latitude side of the trough as expected if this topside ionosphere H+ distribution varies in step with the plasmapause gradient in the distant plasmasphere. These conclusions are based on near-equatorial crossings of the plasmapause (corresponding to the steep gradient in the dominant species H+) by the Explorer-45 satellite as determined from electric-field measurements by Maynard and Cauffman in the early 1970s and ISIS-2 ionospheric topside-sounder measurements. The former data have now been converted to digital form and made available at http://nssdcftp.gsfc.nasa.gov. The latter provide samples of nearly coincident observations of ionospheric main trough crossings near the same magnetic-field lines of the Explorer 45-determined equatorial plasmapause. The ISIS-2 vertical electron density profiles are used to infer where the F-region transitions from an O+ to a H+ dominated plasma through the main trough boundaries.  相似文献   

19.
A brief overview is given of the history of plasmaspheric hiss research, particularly in the context of the recent work by Bortnik et al. (2008) indicating that chorus could be the likely source of plasmaspheric hiss. Previous suggestions given in the literature for this theory are reviewed and then the mechanism itself is outlined, focusing on the characteristic cyclical trajectories executed by typical ray paths that enter into the plasmasphere. A number of directional propagation studies performed in the past are then discussed as well as other work which bears relevance to the present mechanism.  相似文献   

20.
Based on the thermal plasma measurements in the Earth’s inner plasmasphere on the INTER-BALL-2 and MAGION-5 satellites it has been indicated that the plasmaspheric ion temperature as a rule decreases during the main phase of magnetic storms; in this case the plasma density increases or remains at the level typical of undisturbed conditions. The physical mechanism by which the ion drift during a magnetic storm results in a temperature decrease is described. It is shown that the third adiabatic invariant also remains in processes with a characteristic time shorter than the period of charged particle drift around the Earth for cold equatorial plasma. The constructed model of the drift shell displacement from the Earth caused by a decrease in the magnetic field in the inner magnetosphere during the development of a magnetic storm satisfactorily describes the decrease in the proton temperature near the equatorial plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号