首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
简要综述了目前及未来 1 0年内世界上主要的地面和空间红外天文观测计划。  相似文献   

2.
We present L ' and M ' photometry, obtained at the United Kingdom Infrared Telescope (UKIRT) using the Mauna Kea Observatories Near-Infrared (MKO-NIR) filter set, for 46 and 31 standard stars, respectively. The L ' standards include 25 from the in-house 'UKIRT Bright Standards' with magnitudes deriving from Elias et al. and observations at the Infrared Telescope Facility in the early 1980s, and 21 fainter stars. The M ' magnitudes derive from the results of Sinton and Tittemore. We estimate the average external error to be 0.015 mag for the bright L ' standards and 0.025 mag for the fainter L ' standards, and 0.026 mag for the M ' standards. The new results provide a network of homogeneously observed standards, and establish reference stars for the MKO system, in these bands. They also extend the available standards to magnitudes which should be faint enough to be accessible for observations with modern detectors on large and very large telescopes.  相似文献   

3.
Inspection of near-infrared images from Cassini’s Imaging Science Subsystem and Visual and Infrared Mapping Spectrometer have revealed a new feature in Titan’s haze structure: a narrow band of increased scattering by haze south of the equator. The band seems to indicate a region of very limited mixing in the lower stratosphere, which causes haze particles to be trapped there. This could explain the sharp separation between the two hemispheres, known as the north-south asymmetry, seen in images. The separation of the two hemispheres can also be seen in the stratosphere above 150 km using infrared spectra measured by Cassini’s Composite Infrared Spectrometer. Titan’s behaviour in the lower tropical stratosphere is remarkably similar to that of the Earth’s tropical stratosphere, which hints at possible common dynamical processes.  相似文献   

4.
5.
6.
We have just finished building a 1.0–5.5 m infrared array camera for the NASA Infrared Telescope Facility based upon the SBRC 256×256 InSb array. After a brief overview of the capabilities of the camera (named NSFCAM), we present some of the first images obtained with this new camera, including results obtained with our realtime shift & add speckle imaging mode.  相似文献   

7.
CSHELL, the NASA Infrared Telescope Facility Cryogenic Echelle Spectrograph was designed to fill a need for high sensitivity, high resolution, long slit near-infrared spectroscopy. Scientific programs in the areas of comets, planetary atmospheres, young stellar objects, the interstellar medium, and galactic dynamics have been pursued with CSHELL and are described herein. The future of the instrument is also discussed.  相似文献   

8.
We present a characterization of two narrow band filters commonly used in Infrared Astronomy. Our study mainly quantifies the effect of temperature and tilt angle on the central wavelength and width of the transmission bands of such filters. This allows to evaluate some important effects that must be taken into account to have good quality astronomical images. Effects as the limitation of the field of view and the presence of OH sky lines in the final image are quantified.  相似文献   

9.
Observations of ozone on Mars were made using the Goddard Space Flight Center's Infrared Heterodyne Spectrometer and Heterodyne Instrument for Planetary Wind and Composition at the NASA Infrared Telescope Facility. Ozone is an important observable tracer of martian photochemistry. Infrared heterodyne spectroscopy with spectral resolution ?106 is the only technique that directly measures ozone in the martian atmosphere from the surface of the Earth. Ozone column abundances down to the martian surface were acquired in seven data sets taken between 1988 and 2003 at various orbital positions (LS=40°, 74°, 102°, 115°, 202°, 208°, 291°). Ozone abundances are compared with those retrieved using ultraviolet techniques, showing good agreement. Odd hydrogen (HOX) chemistry predicts anticorrelation of ozone and water vapor abundances. Retrieved ozone abundances consistently show anticorrelation with corresponding water vapor abundances, providing strong confirmation of odd hydrogen activity. Deviation from strict anticorrelation between the observed total column densities of ozone and water vapor suggests that constituent vertical distribution is an additional, significant factor.  相似文献   

10.
We present the first spectrum through the L band of an irregular satellite from the outer Solar System. Spectra of Himalia (JVI) were obtained with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. The Himalia spectrum is essentially featureless, showing a slight red slope and the suggestion of an absorption at 3 μm that might indicate the presence of water in some form. Better measurements of the spectrum of Himalia, particularly in the region of the apparent 3-μm band, could help determine whether water is present, and if so, in what form.  相似文献   

11.
Ozone is an important observable tracer of martian photochemistry, including odd hydrogen (HOx) species important to the chemistry and stability of the martian atmosphere. Infrared heterodyne spectroscopy with spectral resolution ?106 provides the only ground-based direct access to ozone absorption features in the martian atmosphere. Ozone abundances were measured with the Goddard Infrared Heterodyne Spectrometer and the Heterodyne Instrument for Planetary Wind and Composition at the NASA Infrared Telescope Facility on Mauna Kea, Hawai'i. Retrieved total ozone column abundances from various latitudes and orbital positions (LS=40°, 74°, 102°, 115°, 202°, 208°, 291°) are compared to those predicted by the first three-dimensional gas phase photochemical model of the martian atmosphere [Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F., 2004. J. Geophys. Res. 109, doi:10.1029/2004JE002268. E07004]. Observed and modeled ozone abundances show good agreement at all latitudes at perihelion orbital positions (LS=202°, 208°, 291°). Observed low-latitude ozone abundances are significantly higher than those predicted by the model at aphelion orbital positions (LS=40°, 74°, 115°). Heterogeneous loss of odd hydrogen onto water ice cloud particles would explain the discrepancy, as clouds are observed at low latitudes around aphelion on Mars.  相似文献   

12.
Observations made by the Imaging Science Subsystem (ISS), Visible and Infrared Mapping Spectrometer (VIMS) and the long-wavelength Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft reveal that the large, long-lived cyclonic vortex at Saturn's south pole has a 4200-km-diameter cloud-free nearly circular region. This region has a 4 K warm core extending from the troposphere into the stratosphere, concentric cloud walls extending 20-70 km above the internal clouds, and numerous external clouds whose anticyclonic vorticity suggests a convective origin. The rotation speeds of the vortex reach . The Saturn polar vortex has features in common with terrestrial hurricanes and with the Venus polar vortex. Neptune and other giant planets may also have strong polar vortices.  相似文献   

13.
Infrared images of Jupiter have been obtained on 5 nights before, during and shortly after the period of the impacts of the fragments of comet Shoemaker-Levy 9 (1993e) with the giant planet. Long lived bright spots produced by the impacts have been measured and analyzed. By measuring the intensity variation of the spots as a function of Jupiter rotation we show that these spots are likely constituted by large and thin clouds of dust located above the methane layer. The IR relative albedos has been also measured for some of these spots.On leave from Center for Astrophysics - Cambridge (USA)  相似文献   

14.
J.W. Norwood  N.J. Chanover 《Icarus》2009,203(1):331-335
We obtained near-infrared spectra of Uranus at NASA’s Infrared Telescope Facility during the planet’s September 2006 and September 2007 oppositions. Ratios between the spectra indicate that in 2006, Uranus’ methane windows appeared much brighter in the south than in the north, and that between 2006 and 2007 they grew dimmer in the south and brighter in the north; we interpret these variations to be primarily caused by changing brightness in Uranus’ upper cloud layer near 2 bars.  相似文献   

15.
The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will also cool the focal plane instruments thus avoiding the use of consumables and giving the mission a long lifetime. SPICA’s large, cold aperture will provide a two order of magnitude sensitivity advantage over current far infrared facilities (>30 microns wavelength). We describe the scientific advances that will be made possible by this large increase in sensitivity and give details of the mission, spacecraft and focal plane conceptual design.
Bruce SwinyardEmail:
  相似文献   

16.
This paper reports on the analysis of the highest spatial resolution hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during its prime mission. A bright area matches a flow-like feature coming out of a caldera-like feature observed in Synthetic Aperture Radar (SAR) data recorded by the Cassini radar experiment [Lopes et al., 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395-412, doi:10.1016/j.icarus.2006.09.006]. In this SAR image, the flow extends about 160 km east of the caldera. The contrast in brightness between the flow and the surroundings progressively vanishes, suggesting alteration or evolution of the composition of the cryolava during the lifetime of the eruptions. Dunes seem to cover part of this flow on its eastern end. We analyze the different terrains using the Spectral Mixing Analysis (SMA) approach of the Multiple-Endmember Linear Unmixing Model (MELSUM, Combe et al., 2008). The study area can be fully modeled by using only two types of terrains. Then, the VIMS spectra are compared with laboratory spectra of known materials in the relevant atmospheric windows (from 1 to 2.78 μm). We considered simple molecules that could be produced during cryovolcanic events, including H2O, CO2 (using two different grain sizes), CH4 and NH3. We find that the mean spectrum of the cryoflow-like feature is not consistent with pure water ice. It can be best fitted by linear combinations of spectra of the candidate materials, showing that its composition is compatible with a mixture of H2O, CH4 and CO2.  相似文献   

17.
We present results from the United Kingdom Infrared Telescope observations of the impact of Deep Impact with Comet 9P/Tempel 1, on July 4, 2005 UT. These observations were carried out in conjunction with the worldwide observing campaign co-ordinated by K.J. Meech [Meech, K.J., and 208 colleagues, 2005. Science 310, 265-269]. The UKIRT team was the first to observe and announce the successful impact. At 05:50:52 (±2.5 s) UT the visible camera that is used to guide the telescope on the comet showed the start of a rapid rise in intensity, such that the visible brightness of Tempel 1 approximately doubled in 70 s. After that time there was a steady increase in the visible flux from the comet until it reached a maximum around 35 min post-impact, at which point it was more than ten times its original intensity. From an average of the time to maximum brightness and the time to noticeable intensity decline, we deduce that the material ejected by the impact expanded with a range of velocities between ∼125 and ∼390 m/s. We also observed water emission lines in the spectral region from 2.8945 to 2.8985 μm. We noted several water lines, which are known to be pumped by sunlight. But there was a lower intensity spectral component, which we propose may result from solar heating of icy grains freshly exposed by the impact.  相似文献   

18.
Ten years ago, Forrest presented the first astronomical images with an SBRC 32×32 InSb array camera at the first NASA-Ames Infrared Detector Technology Workshop. Soon after, SBRC began development of 58×62 InSb arrays, both for ground-based astronomy and for SIRTF. By the time of the 1987 Hilo workshop Ground-based Astronomical Observations with Infrared Array Detectors astronomical results from cameras based on SBRC 32×32 and 58×62 InSb arrays, a CE linear InSb array, and a French 32×32 InSb CID array were presented. And at the Tucson 1990 meeting Astrophysics with Infrared Arrays, it was clear that this new technology was no longer the province of IR pundits, but provided a tool for all astronomers. At this meeting, the first astronomical observations with SBRC's new, gateless passivation 256×256 InSb arrays will be presented: they perform spectacularly!In this review, I can only broadly brush on the interesting science completed with InSb array cameras. Because of the broad wavelength coverage (1–5.5 m) of InSb, and the extremely high performance levels throughout the band, InSb cameras are used not only in the near IR, but also from 3–5.5 m, where unique science is achieved. For example, the point-like central engines of AGNs are delineated at L and M, and Br and 3.29 m dust emission images of galactic and extragalactic objects yield excitation conditions. Examples of imaging spectroscopy, high spatial resolution imaging, as well as deep, broad-band imaging with InSb cameras at this meeting illustrate the power of InSb array cameras.  相似文献   

19.
Weaver  H. A.  Brooke  T. Y.  Chin  G.  Kim  S. J.  Bockelée-Morvan  D.  Davies  J. K. 《Earth, Moon, and Planets》1997,78(1-3):71-80
High resolution (λ/δλ ∼ 20,000) spectra of comet C/1995 O1 (Hale-Bopp) in the 2–5 μm region were obtained during UT 2–5 March 1997 using CSHELL at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. The heliocentric and geocentric distances of the comet were ∼1.1 AU and ∼1.5 AU,respectively. We detected emission lines of the gas-phase molecules H2O, 4, C2H6, C2H2, HCN, and CO and derived absolute production rates and relative abundances for all species. We also used the 2-dimensional nature of the CSHELL data to investigate the spatial distribution of the molecules and find evidence that CO was derived at least partly from an extended source in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
一些窄线赛弗特(Seyfert)1型星系因具有GeV伽马射线辐射(伽马噪)而受到持续关注,截至目前,共报道22个伽马噪窄线赛弗特1型星系,另有3个高置信度候选体.利用广域红外巡天探测器(Wide-field Infrared Survey Explorer,WISE)数据平台,获取了这些源W1(3.4μm)和W2(4....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号