首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
Focal-mechanism solutions of four earthquakes in the eastern Himalayas and northern Burma are determined using the first motion of compressional waves. Two possible solutions thus obtained for each event reveal steeply dipping fault with predominantly strike-slip motion. The stress directions inferred from the focal mechanism solutions are interpreted in the light of predictions of the plate tectonics theory, viz., the underthrusting of the Indian plate in the Burma region in an easterly direction.Dynamic parameters (seismic moment, apparent stress and average dislocations) are obtained using the corrected spectra of Love waves. The earthquakes are found to possess low seismic moment and apparent stress values. A comparison of these estimates with values for intraplate earthquakes is given. It is suggested that these earthquake might be a consequence of a nonhomogeneous rupture process.  相似文献   

2.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

3.
A detailed analysis of recording peculiarities at seismic stations of the Uniform System of Seismic Observations (USSO) is presented a complicated nature of the source being shown. Consideration is given to parameters of the earthquake source, including the seismic moment and the length of the rupture.Comparison of magnitudes MLH and MPV indicates an anomalous attenuation in surface waves, itis is 3–4 times weaker than it had been noticed in case of other intermediate-depth Carpathian earthquakes.On the basis of comparison of the logarithm of the ratio of P-wave spectra at different epicentral distances (30° –70° ), the fac tor characterizing the absorption of P wave is found to remain practically unchanged.Average value of the seismic moment is estimated to be 2.6 × 1027 dyne × cm, the most reasonable length of the rupture 58 km, and its focus 100 –130 km. The source parameters of the earthquake in question are compared with those of the earthquake of November 10, 1940.  相似文献   

4.
This paper examines the variability of seismic activity observed in the case of different geological zones of peninsular India (10°N–26°N; 68°E–90°E) based on earthquake catalog between the period 1842 and 2002 and estimates earthquake hazard for the region. With compilation of earthquake catalog in terms of moment magnitude and establishing broad completeness criteria, we derive the seismicity parameters for each geologic zone of peninsular India using maximum likelihood procedure. The estimated parameters provide the basis for understanding the historical seismicity associated with different geological zones of peninsular India and also provide important inputs for future seismic hazard estimation studies in the region. Based on present investigation, it is clear that earthquake recurrence activity in various geologic zones of peninsular India is distinct and varies considerably between its cratonic and rifting zones. The study identifies the likely hazards due to the possibility of moderate to large earthquakes in peninsular India and also presents the influence of spatial rate variation in the seismic activity of this region. This paper presents the influence of source zone characterization and recurrence rate variation pattern on the maximum earthquake magnitude estimation. The results presented in the paper provide a useful basis for probabilistic seismic hazard studies and microzonation studies in peninsular India.  相似文献   

5.
Advances in earthquake data acquisition and processing techniques have allowed for improved quantification of source parameters for local Australian earthquakes. Until recently, only hypocentral locations and local magnitudes (ML) had been determined routinely, with little attention given to the inversion of additional source parameters. The present study uses these new source data (e.g. seismic moment, stress drop, source dimensions) to further extend our understanding of seismicity and the continental stress regime of the Australian landmass and its peripheral regions.

Earthquake activity within Australia is typically low, and the proportion of small to large events (i.e. the b value) is also low. It is observed that average stress drops for southeastern Australian earthquakes appear to increase with seismic moment to relatively high levels, up to approximately 10 MPa for ML 5.0 earthquakes. This is thought to be indicative of high compressive crustal stress, coupled with strong rocks and fault asperities. Furthermore, the data indicates that shallow focus earthquakes (shallower than 6 km) appear to produce lower than average stress drops than deeper earthquakes (between 6 and 20 km) with similar moment.

Recurrence estimates were obtained for a discrete seismogenic zone in southeastern Australia. Decreasing b values with increasing focal depth for this zone indicate that larger earthquakes (with high stress drops) tend to occur deeper in the crust. This may offer an explanation for the apparent increase of stress drop with hypocentral depth. Consequently, earthquake hazard estimates that assume a uniform Gutenburg–Richter distribution with depth (i.e. constant b value) may be too conservative and therefore slightly overestimate seismic hazard for surface sites in southeastern Australia.  相似文献   


6.
GPS systems can be used as seismometers by sampling ground positions to detect travelling seismic waves. Data from dense geodetic networks near large earthquakes have been used to improve magnitude estimates, for tsunami warning, and to better understand the rupture processes. Here, we present 1 Hz GPS records of the March 11th, 2011, Mw = 9.0 Tohoku earthquake at unprecedented teleseismic distances. The spatial and temporal variations of the three‐dimensional GPS displacement vector field show various body waves, Love and Rayleigh surface waves along the direct path, and Love waves from the more than 31 000 km long major arc path. These results suggest that seismic wavefields can be mapped at teleseismic distances globally using space geodesy and could thus be used for source and structural studies. Data from numerous real‐time kinematic GPS networks could be combined to show the displacement field, giving unparalleled views of Earth's response to large earthquakes.  相似文献   

7.
The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditions. We developed or modified earthquake catalogs and declustered these catalogs to include only independent earthquakes. The resulting catalogs were used to define four source zones that characterize earthquakes in four tectonic environments: subduction zone interface earthquakes, subduction zone deep intraslab earthquakes, strike-slip transform earthquakes, and intraplate earthquakes. The recurrence rates and sizes of historical earthquakes on known faults and across zones were also determined from this modified catalog. In addition to the source zones, our seismic source model considers two major faults that are known historically to generate large earthquakes: the Sumatran subduction zone and the Sumatran transform fault. Several published studies were used to describe earthquakes along these faults during historical and pre-historical time, as well as to identify segmentation models of faults. Peak horizontal ground accelerations were calculated using ground motion prediction relations that were developed from seismic data obtained from the crustal interplate environment, crustal intraplate environment, along the subduction zone interface, and from deep intraslab earthquakes. Most of these relations, however, have not been developed for large distances that are needed for calculating the hazard across the Malaysian peninsula, and none were developed for earthquake ground motions generated in an interplate tectonic environment that are propagated into an intraplate tectonic environment. For the interplate and intraplate crustal earthquakes, we have applied ground-motion prediction relations that are consistent with California (interplate) and India (intraplate) strong motion data that we collected for distances beyond 200 km. For the subduction zone equations, we recognized that the published relationships at large distances were not consistent with global earthquake data that we collected and modified the relations to be compatible with the global subduction zone ground motions. In this analysis, we have used alternative source and attenuation models and weighted them to account for our uncertainty in which model is most appropriate for Sumatra or for the Malaysian peninsula. The resulting peak horizontal ground accelerations for 2% probability of exceedance in 50 years range from over 100% g to about 10% g across Sumatra and generally less than 20% g across most of the Malaysian peninsula. The ground motions at 10% probability of exceedance in 50 years are typically about 60% of the ground motions derived for a hazard level at 2% probability of exceedance in 50 years. The largest contributors to hazard are from the Sumatran faults.  相似文献   

8.
The frequency dependence of the function of the seismic wave attenuation was determined for the first time for southern Sakhalin on the basis of seismic coda of local earthquakes using the model of single scattering. The algorithm of the automated definition of the scalar seismic moments was realized for small earthquake foci. Mass estimates of the scalar seismic moments were obtained as exemplified by the after-shocks of the August 17, 2006, Gornozavodsk earthquake (MW 5.6) and the May–June 2004 Kostromskoe earthquake swarm events, which occurred in South Sakhalin. The dynamic parameters of the earthquake foci were determined from the SH-wave spectra adjusted for absorption and geometrical spreading. The loglinear relationship determined between the seismic moment and the local magnitude is in good agreement with the estimates obtained for other regions and, in a certain sense, does not contradict the average world dependence.  相似文献   

9.
A simple method is developed to determine seismic moments of earthquakes. The method is qualified through criteria such as simplicity of calculations, coverage of wide magnitude range, and insensitivity to detailed instrumental response. The method is applied to 163 major earthquakes which occurred underneath Japan and the Japan Sea in the time from 1926 to 1977. Magnitudes of these earthquakes, which have been determined by the Japan Meteorological Agency, (MJMA) cover the range from 4.3 to 7.5. At first, source spectra are analyzed through a very simple way introducing two new parameters: characteristic period Tc and seismic-moment factor Mc. The former is defined as an average value of apparent periods of seismic waves with the maximum trace amplitude at many stations. The latter is an average of products of maximum trace amplitude and its apparent period multiplied by epicentral distance. It is shown that Tc corresponds to the period of the corner frequency of an earthquake and Mc to the seismic-moment density at the period of Tc. A scaling model of earthquake source spectra is presented which satisfies the empirical relations between the surface-wave magnitude Ms and MJMA, and MJMA and the body-wave magnitude mb. Those relations are independent of the Gutenberg and Richter relation between Ms and mb, because MJMA is determined from maximum amplitudes of seismic waves with a period of about 4 sec. The static seismic moment of each earthquake can be estimated from calculated Mc using the source spectra of the scaling model. Seismic moments of 18 earthquakes determined by conventional analyses from near- and/or far-field observations are consistent with static seismic moments thus estimated over the range from 2 × 1023 to 3 × 1027 dyne cm. This shows the potential in practice of the present method, especially in the routine processing of seismic data.  相似文献   

10.
Seismicity of Gujarat   总被引:2,自引:2,他引:0  
Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M????6 in a region having three devastating earthquakes that occurred during 1819 (M w7.8), 1956 (M w6.0) and 2001 (M w7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M????6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6.  相似文献   

11.
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266–533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels.  相似文献   

12.
A method has been developed to obtain the seismic moment tensor components by linear inversion of P waves recorded at regional distance for intermediate depth earthquakes. The seismic moment tensor is separated into double couple (DC) and compensated linear vector dipole (CLVD) parts. The method has been applied to four earthquakes (64<h<95 km) which occurred in the Malaga region (southern Spain). Solutions for the 1987 event show a percentage of CLVD of 20% with a short source time function and DC part corresponding to vertical motion. For the 1989, 1990 and 1992 earthquakes, percentages of CLVD between 0% and 6% have been found. Comparison with the results obtained in a previous study [Buforn et al., J. Seismol. 1 (1997) 113] by modelling of P waves using a DC model, shows that the use of a more general representation of the source (seismic moment tensor) gives a fit of data for the 1987 event.  相似文献   

13.
作为地震灾害评估的理论基础,地震动力学主要研究与地震活动有关的断裂机制、破裂过程、震源辐射和由此而引起的地震波的传播及地面运动规律。对地震力学、震源辐射和能量释放等经典理论问题进行了系统研究。在此基础上,应用最新的定量地震学研究方法,以逻辑树的形式综合地震、地质和大地测量资料,提供了不同构造环境和断裂机制条件下地震灾害评估的概率分析和确定性分析实例。用于震源分析的典型构造类型包括板内地壳震源层、地壳活动断层及其速率、板块俯冲界面和俯冲板片。由于输入模型中不确定因素的存在,如输入参数的随机性和科学分析方法本身的不确定性,对分析结果的不确定性需审慎对待。通常对不同的模型或参量,包括地面衰减模型,进行加权平均可较为合理地减小结果的偏差:概率分析和确定性分析方法的结合亦为可取之有效途径。  相似文献   

14.
Earthquake source parameters and crustal \(Q_{0}\) values for the 138 selected local events of (\(\hbox {M}_{\mathrm{w}}{:}2.5{-}4.4\)) the 2001 Bhuj earthquake sequence have been computed through inversion modelling of S-waves from three-component broadband seismometer data. SEISAN software has been used to locate the identified local earthquakes, which were recorded at least three or more stations of the Kachchh seismological network. Three component spectra of S-wave are being inverted by using the Levenberg–Marquardt non-linear inversion technique, wherein the inversion scheme is formulated based on \(\omega ^{2}\) source model. SAC Software (seismic analysis code) is being utilized for calculating three-component displacement and velocity spectra of S-wave. The displacement spectra are used for estimating corner frequency (in Hz) and long period spectral level (in nm-s). These two parameters play a key role in estimating earthquake source parameters. The crustal \({Q}_{0}\) values have been computed simultaneously for each component of three-component broadband seismograph. The estimated seismic moment (\(M_{0}\)) and source radius (r) using S-wave spectra range from 7.03E+12 to 5.36E+15 N-m and 178.56 to 565.21 m, respectively. The corner frequencies for S-wave vary from 3.025 to 7.425 Hz. We also estimated the radiated energy (\(E_{S}\)) using velocity spectra, which is varying from 2.76E+06 to 4.07E+11 Joules. The estimated apparent stress drop and static stress drop values range from 0.01 to 2.56 and 0.53 to 36.79 MPa, respectively. Our study also reveals that estimated \(Q_{0}\) values vary from 119.0 to 7229.5, with an average \(Q_{0}\) value of 701. Another important parameter, by which the earthquake rupture process can be recognized, is Zuniga parameter. It suggests that most of the Kachchh events follow the frictional overshoot model. Our estimated static stress drop values are higher than the apparent stress drop values. And the stress drop values are quite larger for intraplate earthquakes than the interplate earthquakes.  相似文献   

15.
The Van earthquake (M W 7.1, 23 October 2011) in E-Anatolia is typical representative of intraplate earthquakes. Its thrust focal character and aftershock seismicity pattern indicate the most prominent type of compound earthquakes due to its multifractal dynamic complexity and uneven compressional nature, ever seen all over Turkey. Seismicity pattern of aftershocks appears to be invariably complex in its overall characteristics of aligned clustering events. The population and distribution of the aftershock events clearly exhibit spatial variability, clustering-declustering and intermittency, consistent with multifractal scaling. The sequential growth of events during time scale shows multifractal behavior of seismicity in the focal zone. The results indicate that the extensive heterogeneity and time-dependent strength are considered to generate distinct aftershock events. These factors have structural impacts on intraplate seismicity, suggesting multifractal and unstable nature of the Van event. Multifractal seismicity is controlled by complex evolution of crustal-scale faulting, mechanical heterogeneity and seismic deformation anisotropy. Overall seismicity pattern of aftershocks provides the mechanism for strain softening process to explain the principal thrusting event in the Van earthquake. Strain localization with fault weakening controls the seismic characterization of Van earthquake and contributes to explain the anomalous occurrence of aftershocks and intraplate nature of the Van earthquake.  相似文献   

16.
Andrei Bala 《Natural Hazards》2014,72(3):1429-1445
Bucharest, the capital city of Romania, with more than 2 million inhabitants, is considered as a natural disaster hotspot by a recent global study of the World Bank and the Columbia University (Dilley M et al. Natural disaster hotspots: a global risk analysis. International Bank for Reconstruction and Development/The World Bank and Columbia University, Washington, DC in 2005). Therefore, it is classified as the second metropolis in Europe, after Istanbul, subjected to important losses in the case of a destructive Vrancea earthquake with moment magnitude greater than seven. Four major earthquakes with moment magnitudes between 6.9 and 7.7 hit Bucharest in the last 68 years. The most recent destructive earthquake on March 4, 1977, with a moment magnitude of 7.4, caused about 1,500 casualties in the capital alone. All disastrous intermediate-depth earthquakes are generated within a small epicentral area—the Vrancea seismogenic region—about 150 km northeast of Bucharest. Thick unconsolidated sedimentary layers below Bucharest amplify the arriving seismic waves causing severe destruction. Ten 50-m-deep boreholes are drilled in the metropolitan area of Bucharest in order to obtain a unique, homogeneous dataset of seismic, soil-mechanic and elasto-dynamic parameters. Cores for dynamic tests were extracted, and vertical seismic profiles were performed to obtain an updated site amplification model related to earthquakes waves. The boreholes are placed near former or existing seismic station sites to allow a direct comparison and calibration of the borehole data with previous seismological measurements. A database containing geological characteristics for each sedimentary layer, geotechnical parameters measured on rock samples, P- and S wave velocity and density for each sedimentary layer is set up, as a result of previous papers with this subject. Direct data obtained by the geophysical methods in the new boreholes drilled in Bucharest City, as well as from laboratory measurements, are used as input data in the program SHAKE2000. Results are obtained in the form of spectral acceleration response, and peak acceleration in depth is computed for every site in which in situ measurements were performed. The acceleration response spectra correspond to the shear-wave amplifications due to the models of sedimentary layers down to (a) 50 m depth; (b) 70 m depth; and (c) 100 m depth. A comparison of the acceleration response spectra obtained by modelling at surface with a real signal recorded at surface is obtained in three sites, as test sites for the three depths considered, in order to calibrate the results obtained by equivalent linear method of the seismic site response.  相似文献   

17.
SOURCE RADIATION AND RESPONSES OF WAVE PROPAGATION   总被引:2,自引:0,他引:2  
Recordings of seismic waves propagating from earthquake source to a station at the earth's surface are a system response function.The convolution operator in time domain can be simplified as a multiplication operator in frequency domain.We discuss in frequency domain the separation of source,path and site effects for global scaling of earthquake source radiation.Also discussed are source scaling model,faulting mechanism,and the H/V inversion problems with crustal and near surface structures.Gross features of apparent source spectra appear to be not much region-dependent although there may be difference between tectonic styles within a region of tectonic mixture for which we need further study as data accumulate.Vertical spectra may be a better approach to approximate source radiation,as it has less crustal amplification effects than horizontal spectra.The H/V ratio is evidently a comprehensive indicator of amplification effects from near surface to deep structure.This gives it potential as an inversion tool to deduce site crustal structure.  相似文献   

18.
尹得余  刘启方 《地球科学》2016,41(10):1781-1793
合理地估计汶川破坏区域的地震动有助于地震灾害的研究.通过利用芦山地震记录建立的加速度包络衰减关系和汶川地震近场30个台站的加速度包络,基于线源模型,采用差分进化方法反演了汶川地震断层面上高频 (>1 Hz) 辐射区域分布.结果表明:断层面上高频辐射分布很不均匀,辐射较强的区域主要位于:(1) 产生较大地表破裂的映秀、北川和南坝区域;(2) 映秀和北川等凹凸体的周边区域,包括震中东北侧60~90 km区域、北川和南坝东北侧30 km处;(3) 断层破裂停止的东北端约30 km长的区域.其中,破裂贯穿到地表的映秀、北川和南坝是低频和高频辐射都很强的区域.对于无观测记录场点,选择其临近且场地条件类似的台站加速度提取平稳随机过程,结合高频辐射分布和衰减关系得到的包络,合成了加速度时程,可为汶川地震结构震害分析提供地震动输入.   相似文献   

19.
The paper presents a detailed analysis of 1st April 2015 earthquake, whose epicenter (30.16° N, 79.28° E) was located near Simtoli village of Chamoli district, Uttarakhand. The focal depth is refined to 7 km by the grid search technique using moment tensor inversion. The source parameters of the earthquake as estimated by spectral analysis method suggested the source radius of ~1.0 km, seismic moment as 1.99E+23 dyne-cm with moment magnitude (Mw) of 4.8 and stress drop of 69 bar. The fault plane solution inferred using full waveform inversion indicated two nodal planes, the northeast dipping plane having strike 334° and dip 5° and the southwest dipping plane with dip 86° and strike 118°. The parallelism of the nodal plane striking 334° with dip 5° as indicated in depth cross sections of the tectonic elements suggested the north dipping Main Boundary Thrust (MBT) to be the causative fault for this earthquake. Spatio-temporal distribution of earthquakes during the period 1960-2015 showed seismic quiescence during 2006-2010 and migration of seismicity towards south.  相似文献   

20.
New empirical relations are derived for source parameters of the Koyna–Warna reservoir-triggered seismic zone in Western India using spectral analysis of 38 local earthquakes in the magnitude range M L 3.5–5.2. The data come from a seismic network operated by the CSIR-National Geophysical Research Institute, India, during March 2005 to April 2012 in this region. The source parameters viz. seismic moment, source radius, corner frequency and stress drop for the various events lie in the range of 1013–1016 Nm, 0.1–0.4 km, 2.9–9.4 Hz and 3–26 MPa, respectively. Linear relationships are obtained among the seismic moment (M 0), local magnitude (M L), moment magnitude (M w), corner frequency (fc) and stress drop (?σ). The stress drops in the Koyna–Warna region are found to increase with magnitude as well as focal depths of earthquakes. Interestingly, accurate depths derived from moment tensor inversion of earthquake waveforms show a strong correlation with the stress drops, seemingly characteristic of the Koyna–Warna region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号