首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence-stratigraphic signatures of hemipelagic siltstones were investigated using profiles of the magnetic susceptibility and selected chemical composition of the Early Pleistocene deep-water successions of the Kiwada and Otadai Formations on the Boso Peninsula, Japan. In the context of an independently developed sequence-stratigraphic framework for the submarine-fan deposits of the Otadai Formation, the magnetic susceptibility and chemical composition, such as the concentrations of TiO2, MgO and Fe2O3, show that the lowstand systems tract deposits have higher values of these parameters than the transgressive and highstand systems tract deposits. In contrast, the CaO contents have inverse relationships with the magnetic susceptibility and are higher in the transgressive and highstand systems tract deposits. The positions of sequence boundaries largely coincide with the horizons from which the magnetic susceptibility and the contents of mafic component increase abruptly. The sequence-stratigraphic variations in the magnetic susceptibility and chemical composition of the submarine-fan hemipelagic siltstones are due to increases in the input of fine-grained, terrigenous clastic sediments from midwater flow suspension, in addition to the direct fluvial supply of relatively unmodified terrigenous clastic sediments during relative sea-level lowstands, although grain size of hemipelagic siltstones does not exhibit any distinct variation through depositional sequences. The Kiwada Formation is characterized by siltstone-dominated basin-plain deposits and its sequence-stratigraphic classification has been difficult when using just lithofacies features. Nevertheless, the profiles of the magnetic susceptibility and chemical composition of the basin-plain deposits are similar to those of the submarine-fan deposits with duration largely equivalent to the 41,000-years obliquity cycle of the Early Pleistocene oxygen isotope sea-level index. This finding indicates that the profiles of the magnetic susceptibility and chemical composition of hemipelagic siltstones reflect sequence-stratigraphic variation in the input of fine-grained terrigenous clastic sediments to the deep-water environments and are crucial for the recognition of cryptic sequence boundaries in hemipelagic successions.  相似文献   

2.
Most of the Quaternary sediments of the Mozambique Fan have been derived from Africa-Madagascar and deposited by turbidity currents in Pleistocene time. Currents caused by movement of the Antarctic Bottom Water also played a significant role in reworking and redepositing sediments along the marginal areas of the fan. The inner or upper Mozambique Fan is characterized by a single, leveed valley. Due to the effects of the Coriolis force, the natural levees to the east of the valley (left, looking downstream) are higher and contain more terrigenous sediments than those to the west of the valley. The sea floor to the west of the valley returns regular hyperbolic echoes as seen on 3·5 kHz echograms, whereas to the east of the valley, the sea floor is relatively smooth. The sediments on the valley floor are coarse-grained (with median grain up to 2 mm) and poorly sorted, and occur often as massive turbidites, interbedded with hemipelagic sediments. Away from the valley, both to the east and the west, the terrigenous sediments are relatively fine-grained and have been deposited as overbank turbidite sequences. We estimate the maximum velocities of the channelized turbidity currents in the upper fan to have been 8–32 ms?1. The middle fan has several distributary channels with no levees and has a relatively flat sea floor, characterized by lack of acoustic penetration. Thick, sheet-like, turbidite sand beds, deposited primarily by unchannelized turbidity currents, characterize the middle fan. The middle fan grades, towards the margins, into the outer (lower) fan which is relatively free of channels, has good acoustic penetration and contains hemipelagic and pelagic sediments, and thin, fine-sand turbidite and/or contourite beds. A wide zone of sediment waves, formed from the reworking of the turbidity current-fed sediments by the Antarctic Bottom Water, forms part of the outer fan.  相似文献   

3.
This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.  相似文献   

4.
Shingled Quaternary debris flow lenses on the north-east Newfoundland Slope   总被引:1,自引:0,他引:1  
Debris flow deposits are the principal component of Quaternary continental slope sediments between the north-east Newfoundland Shelf and central Orphan Basin. In seismic profiles, these deposits occur as shingled, elongate, acoustically transparent lenses with their long axes orientated downslope. Deposits of individual flows form positive mounds on the sea floor; subsequent flows were diverted by the pre-existing topography into bathymetric lows between older debris flow deposits. These deposits show a large variation in the area of sea floor covered by individual flows (about 60–1000 km2), average thickness of deposits (9–37 m) and volume of sediment displaced (1–27 km3). The ratio of average thickness to a measure of deposit diameter, termed the aspect ratio, has a threefold variation from 0·0006 to 0·0021. Very low depositional slopes and low aspect ratios suggest relatively low viscosities, probably due to inmixing of water during downslope transport. Stratified sediments form three distinct horizons and are locally interbedded with the debris flow deposits. These are mainly hemipelagic deposits. The slope and rise to the west of the Orphan Basin are constructional in character. The apparent absence of upper slope erosional features and the abundance of debris flow deposits on the slope suggest that the supply of sediment to the continental slope occurred predominantly during times of maximum extent of Quaternary glacial ice. The ice sheet grounding line during several glacial maxima must have been situated at or near the present shelf break, supplying vast amounts of sediment directly to the upper slope. Oversteepening and subsequent slope failures fed material into deeper water.  相似文献   

5.
The subalpine to montane zones within the Critical Zone (CZ) of the Colorado Front Range, USA outside Pleistocene glaciation limits are characterized by the abundance of stratified and multilayered slope deposits exhibiting depths >1 m. Initial luminescence dating for the upper sediment layers in different profiles give last glacial ages ranging between 40 and 12 ka. A periglacial origin by solifluction is hypothesized for these slope deposits, which is corroborated by geomorphic and sedimentologic parameters. The stratified slope sediments have a strong influence on the physical and chemical properties as well as on soil forming processes in the CZ. Examples are provided for the sediment derived contribution of some elements and common clay minerals together and the great importance of slope sediments as barriers and pathways for the interflow that runs in sediment layers are shown.  相似文献   

6.
On the basis of the author’s data on the composition of sediments and seismic cross sections, together with literature data, the bottom topography was described and the main structural features of the top 10–100 m thick sedimentary sequence in the Southwestern Atlantic (Brazil Basin) were identified. The presence of a heavy northward flow of Antarctic bottom water (AABW) and its active erosive activity were confirmed. The AABW caused the erosion or redeposition of red pelagic clays and hemipelagic clays, which accumulated in the Brazil Basin in the Holocene and Pleistocene; the clays contain abundant redeposited Pleistocene diatoms and Neogene and Paleogene discoasters. In most of the sediment cores of the Brazil Basin, the red pelagic clays are of Pleistocene age. Contourites and sandy microlayers have been found in the sediments at the foot of the continental slope of South America; this is the effect of the Deep Western Boundary Current on the ocean floor. The AABW transfers Antarctic diatom species along the continental slope of South America to 10°-5° S. The presence of the Equatorial Midocean Channel with a relative depth of 149 m in the western pelagic equatorial part of the Atlantic was confirmed, and new channels, such as Vavilov and Akademik Ioffe, have been found. The AABW flows northward along the Equatorial Mid-Ocean Channel. Apparently, the Akademik Ioffe Channel is not a proper midocean channel. At 20° S (at a depth of 5000 m), Pleistocene diatomic (Ethmodiscus rex) ooze containing up to 74% amorphous SiO2 was detected. On the Amazon-Mid-Atlantic Ridge profile, the AABW flows into the Guyana Basin through only one valley of the Nara Plain, with a depth of 4620 m. Near the Ceara Rise and on the Amazon Fan, no geologic traces of the AABW flow into the Guyana Basin were found. Near the Rio Grande Rise, the AABW might have appeared in the Eocene. The formation of the Vema Channel, which separates the Rio Grande Rise from South America, also began at that time. The AABW flows were the heaviest before the largest glaciations (particularly at isotopic stages 7/6 and 3/2).  相似文献   

7.
Measured pore-water concentrations of iron in interbedded pelagic and turbiditic sediments from the Nares Abyssal Plain are in excellent agreement with sediment colour and measured redox potential. The organic carbon content of these sediments appears to define the redox conditions and consequently the porewater and solid-phase concentration of constituents that are involved in early diagenetic reactions. In the turbiditic sediments the concentration of NO3 generally goes to zero within a sediment depth of 1 m, whereas at 8 m in a pelagic core from the same area the concentration of NO3 is still higher than it is in the bottom water. The pore-water concentration of Mn2+ in the turbiditic sediments increases sharply down to a depth of approximately 3 m and from thereon remains nearly constant due to saturation with respect to Mn, Ca-CO3. The pore water of the turbiditic sediments is also saturated with respect to calcite. The few “diagenetic spikes” in the pore-water concentration of NO3 and Mn2+ and the concentration/depth profile of dissolved iron, H4SiO4 and phosphate all clearly demonstrate the inhomogeneous nature of interbedded pelagic and turbiditic sediments. The simultaneous occurrence of peaks of dissolved iron/silica and of sediment intervals with a relatively high organic carbon content is attributed to enhanced early diagenetic reactions associated with the decomposition of organic matter in these specific intervals. Linked with these reactions is the irregular pore-water concentration of phosphate, which is shown to originate partly from the oxidation of organic matter, but mainly from the desorption of phosphate from iron oxide. Potential concentrations of phosphate are calculated from the stoichiometric early diagenetic reactions and compared with measured concentrations. Due to the unique combination of low porosity and relatively high sedimentation rates, the sediments from the Nares Abyssal Plain are an ideal basis for the study of such interbedded sequences of pelagic and turbiditic deposits.  相似文献   

8.
Bulk rock geochemistry of 169 fine-grained sediment samples of the upper Cretaceous to Paleogene Gosau Group(Northern Calcareous Alps,Austria and Slovakia) from borehole and outcrop localities was performed to separate non-marine and marine deposits.Geochemical characteristics of different Gosau depositional systems,basins and sediment provenance using major-,trace-,and rare earth elements were also investigated.Geochemical proxies such as boron concentrations were tested for seeking the possibilities of paleosalinity indicators.Due to the fact that several pelagic sections are represented by extremely low boron contents.B/Al* ratios are recognized as more robust and differentiate reliably between marine(mean:160±34) and non-marine(mean:133±33) samples.Using statistical factor analysis,hemipelagic to pelagic samples from the Gieβhbl Syncline and Slovakian equivalents can be differentiated from marginal-marine to non-marine samples from the Grnbach and Glinzendorf Syncline related to terrigenous(SiCh.Al2O3,K2O,Th,Rb,Zr and others) and pelagic indicative elements (CaO,Sr,TOT/C and B/Al*).A clear indication for ophiolitic provenance is traced by high amounts of chromium and nickel.Only non-marine successions of the Glinzendorf Syncline show higher Cr and Ni concentrations(up to 250 and 400 ppm,respectively) and enriched Cr/V and Y/Ni ratios trending to an ultramafic source.  相似文献   

9.
The Kiselevka-Manoma Complex, the youngest accretionary complex in the Russian Far East, is composed of Jurassic-Lower Cretaceous pelagic and hemipelagic oceanic deposits. The radiolarian biostratigraphic study made it possible to refine the stratigraphy of the upper portion of the siliceous sediments from the northeastern fragment of this accretionary complex in the vicinity of the Kiselevka settlement in the Lower Amur region. The transition from pelagic siliceous to hemipelagic siliceous-clayey sedimentation was established within the interval from the Late Barremian to the Middle Aptian in different parts of the complex. The age of the accretion of the oceanic rocks is defined as postmiddle Aptian.  相似文献   

10.
The behavior of rare earth elements (REE) and Th is studied along the west–east transect at 22°N across the Atlantic Ocean. It is shown that both REE and Th contents, relative to Al (the most lithogenic element), increase toward the pelagic region. The increasing trend becomes more complicated due to variations in the content of biogenic carbonate that serves as a diluting component in sediments. The REE composition varies symmetrically relative to the Mid-Atlantic Ridge (MAR) emphasizing a weak hydrothermal influence on sediments of the ridge axis, although the well-known criteria for hydrothermal contribution, such as Al/(Al + Mn + Fe) and (Fe + Mn)/Ti, do not reach critical values. Variations in the REE content and composition allowed us to distinguish the following five sediment zones in the transect: (I) terrigenous sediments of the Nares abyssal plain; (II) pelagic sediments of the North American Basin; (III) carbonate ooze of the MAR axis; (IV) pelagic sediments of the Canary Basin; and (V) terrigenous clay and calcareous mud of the African continental slope and slope base. Ferromanganese nodules of the hydrogenetic type with extremely high Ce (up to 1801 ppm) and Th (up to 138 ppm) contents occur in pelagic sediments. It is ascertained that P, REE, and Th concentrations depend on Fe content in Atlantic sediments. Therefore, one can suggest that only a minor amount of phosphorus is bound in bone debris. The low concentration of bone debris phosphorus is a result of relatively high sedimentation rates in the Atlantic, as compared with those in pelagic regions of the Pacific.  相似文献   

11.
The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ∼1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ∼95% relative to chondritic Ir proportions. A similar depletion in Os (∼90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ∼1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ∼65 Ma, the effective diffusivities are ∼10−13 cm2/s, much smaller than that of soluble cations in pore waters (∼10−6 cm2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have Os/Ir ratios ≥1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (<10%) and Re (<0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most ∼25% of the K-T impactor’s Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the Os/Ir ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.  相似文献   

12.
Results of research into recent sediments and their distribution in Lake Baikal are presented. Five areas with different mechanisms of sedimentation have been recognized: (1) deep-water plains with pelagic mud and turbidites; (2) littoral zones without turbidites; (3) underwater ridges (rises) with hemipelagic mud accumulated under calm sedimentation conditions; (4) delta (fan) areas near the mouths of large rivers, where sediments consist mainly of terrigenous material; and (5) shallow Maloe More with poorly sorted terrigenous material and abundant sand. The rate of sedimentation differs considerably in different Baikal areas. The highest rates appear near the mouths of large rivers, lower ones occur in the deep lake basins, and the minimum rates are developed on underwater ridges. A map of the distribution of Holocene sediments in Baikal has been compiled for the first time. The obtained results show that the bottom morphology significantly determines the type of sediments in the lake.  相似文献   

13.
Dissolved trace elements and heavy metals of waters and sediments in the ten shallow lakes in the middle and lower reaches of the Yangtze River region were determined to identify their composition and spatial distribution, and to assess the extent of their environmentally detrimental effects by comparison with water and sediment quality guidelines. Results indicated that As and Pb were the main pollutants in lake waters and Mn and Hg the potential ones, while As, Cu and Pb were the main pollutants in lake sediments. Their spatial distribution indicated that Daye Lake was seriously polluted by metals, which was corroborated by cluster analysis. Higher concentrations of trace elements have been found in lakes downstream of the Yangtze River delta, and higher concentrations of metals have been recorded in sediments of upstream lakes, suggesting that metals in water were more sensitive to anthropogenic activities and that metals in sediment were mainly controlled by minerals. Correlation analyses demonstrated that there were stronger associations among metals in lake sediments than those in lake waters, and their good relationships suggested the common sources. Further research on the subject will help develop water quality management with the aim of restoring shallow lakes in the Yangtze River.  相似文献   

14.
《Quaternary Science Reviews》2004,23(16-17):1847-1865
High-resolution seismic data and sediment cores show that an up to 280 m thick sedimentary sequence has been deposited on the south Vøring margin, off mid-Norway, the last ca 250 ka. The sedimentary succession has been divided into six seismic units, dominated by hemipelagic sediments. Five wedge-shaped massive sequences, of marine isotope stages 8, 6 and 2, interfinger the hemipelagic deposits on the upper slope. The wedge-shaped sequences represent glacigenic debris flows that have been fed by till transported to the shelf edge by grounded ice sheets during maximum glaciations. The hemipelagic units show well-defined depocentres, of various thicknesses, on the upper continental slope. Seismic facies interpretation indicates that the sediment distribution locally has been controlled by currents. Commonly, the hemipelagic units are characterised by parallel and continuous reflectors. However, the second youngest unit identified, deposited between 15.7 and 15.0 14C ka BP, is acoustic transparent. We suggest that this unit has been sourced by along-slope transported meltwater plume deposits, released during the initial stage of the last deglaciation of the Norwegian Channel. The hemipelagic sedimentation rates have varied considerably throughout the studied time period. Until ca 21 14C ka BP the rates did not exceed 1.4 m/kyr, whereas during the Last Glacial Maximum the rates increased and reached values of about 36 m/kyr before decreasing again at ca 15 14C ka BP. Observation of iceberg scourings, of MIS 8 age, about 800 m below the present day sea level, suggest that the south Vøring margin has subsided by a rate of 1.2 m/kyr in the Late Quaternary.  相似文献   

15.
The composition of clay minerals in the subcolloid fraction from the uppermost layer of bottom sediments in the northern part of Amur Bay was determined by X-ray powder diffraction analysis, and the enrichment of 33 elements in the subcolloid and pelite fractions of the surface deposits from a number of sites at the marginal filter of the Razdol’naya River was studied by ICP-MS.Fe, U, and chalcophile elements are contained in the highest concentrations in sediments from all sampling sites within the filter. The bottom sediments are not enriched in trace, alkali, and alkali-earth elements. The maximum concentrations of chemical elements were found in deposits from the brackish part of the marginal filter, perhaps, because of the formation of Fe and Mn (Al) hydroxides. Bottom sediment at the boundary between the brackish and marine parts of the filter contain the lowest concentrations of the examined elements.  相似文献   

16.
Some comparative marine chemistries of rhenium, gold, silver and molybdenum   总被引:1,自引:0,他引:1  
Four metals, Re, Au, Ag and Mo, whose dissolved forms in seawater can potentially be reduced to insoluble states, have been measured in a variety of solids depositing under anoxic conditions: hydrothermal sulfides; coastal sediments; and phosphorites. For comparative purposes these elements have also been determined in ferromanganese minerals and pelagic sediments which have accumulated under oxidizing conditions. Rhenium appears to be a unique sentinel for identifying reducing depositional environments, where enrichments of greater than three orders of magnitude above crustal concentrations are found. Molybdenum follows Re in these sediments but Mo is enriched also in those that accumulate under oxidizing conditions. The reported Mo crustal concentrations appear low in comparison to our measured sedimentary values. Gold and Ag are concentrated in hydrothermal deposits and sulfides appear to be involved in the precipitation of these elements. Coastal sediments adjacent to a domestic outfall of Los Angeles, California contain extraordinary high accumulations of anthropogenic Au, Ag and Pt. The study seeks an understanding of the mobilities and sinks of these metals in the marine environment during the major weathering cycle. Further, anthropogenic contributions to their sedimentary concentrations are identified.  相似文献   

17.
Late Quaternary sequence stratigraphy of Lake Malawi (Nyasa), Africa   总被引:1,自引:0,他引:1  
High resolution seismic data, multichannel seismic data and sediment cores were used to examine the Songwe Sequence, the uppermost of four depositional sequences identifiable on multichannel seismic data from Lake Malawi (Nyasa). The sequence has a maximum thickness of about 115 m in two areas of the lake, but is typically less than 70 m thick over most of the basin. The sequence is distributed along the entire length of the 560 km long lake, and is concentrated in three main depocentres. 14C age dates from sediment piston cores are extrapolated to provide an age estimate of about 78 000 yr bp for the oldest sediments within the Songwe Sequence. In the North and Central bathymetric basins of the lake, high resolution seismic data indicate a dynamic depositional environment, dominated by turbidity and mass flow deposits. Seismic data from the southern basin show acoustically transparent sediments with relatively low amplitude internal reflections, indicative of pelagic and hemipelagic sedimentation. In many areas the Songwe Sequence is underlain by a pronounced angular unconformity, suggestive of a significant, prolonged, low lake stage prior to deposition of the sequence. Seismic reflectors within the Songwe Sequence can be correlated to younger low lake stages identified from sediment core data. Major late Quaternary low lake level stages in Lake Malawi, interpreted from features identified in the seismic data and sediment core analyses, are tentatively interpreted at 6000 to 10 000 yr bp , 28 000 to >40 000 yr bp , and prior to 78 000 yr bp . Budget calculations indicate mean sediment concentrations from catchment runoff during the period of deposition of the Songwe Sequence to be about 190 mg 1−1, comparable to estimates of modern rainy season discharges from the major river systems. Erosion rates within the drainage basin are estimated to be higher than the African average by a factor of three or more, probably due to the high relief within the Lake Malawi catchment.  相似文献   

18.
近年发现,太平洋和印度洋的深海盆地中存在大量富含稀土的深海沉积物。主要类型为多金属软泥、沸石黏土和远洋黏土,其中的全稀土含量(∑REY,∑REE+Y)为400×10-6~2000×10-6,最高可达6600×10-6,重稀土含量(HREE)已达到或超过中国南方离子吸附型矿床的重稀土品位两倍以上,是潜在的新型稀土资源,具有重要的经济价值。目前不少学者对富稀土的深海沉积物进行了大量地球化学及部分矿物学的工作,认为多金属软泥中的稀土元素多赋存于与海底热液作用有关的铁锰氧化物和氢氧化物中,而沸石黏土和远洋黏土中稀土元素的富集则与磷酸盐的混入密切相关,其稀土元素主要存在于与磷灰石成分相当的生物鱼骨屑中。深海黏土的北美页岩标准化稀土配分模式与海水相似,表明其中的稀土元素主要来自于海水,REY富集成矿可能主要受控于磷灰石早期成岩阶段,期间稀土元素未发生分异。尽管近些年对深海沉积物中的稀土元素研究取得了不少成果,但是,对于沉积物中的稀土富集机制及影响因素等问题仍然需要更加深入的研究。作为稀土资源大国,为了争取我国在国际海底稀土资源竞争中的话语权,维护中国的稀土利益,中国应加紧开展相关的稀土资源勘查和潜力评价。  相似文献   

19.
Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments.A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism.An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows.A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite.The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels.Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are interpreted as products of this volcanism, suggesting that the Santa Isabel-Malaita-Ulawa area, where these beds are prevalent, was relatively close to the main Solomons chain at this time. A subduction zone may have dipped towards the northeast beneath this volcanic chain. Pliocene to Pleistocene calcalkaline volcanism and tectonism resulted in the emergence of all large islands and led to deposition of clastic and carbonate facies in paralic, shallow and deep marine environments.  相似文献   

20.
The East Sakhalin accretionary wedge is a part of the Cretaceous-Paleogene accretionary system, which developed on the eastern Asian margin in response to subduction of the Pacific oceanic plates. Its formation was related to the evolution of the Early Cretaceous Kem-Samarga island volcanic arc and Late Cretaceous-Paleogene East Sikhote Alin continental-margin volcanic belt. The structure, litho-, and biostratigraphy of the accretionary wedge were investigated in the central part of the East Sakhalin Mountains along two profiles approximately 40 km long crossing the Nabil and Rymnik zones. The general structure of the examined part of the accretionary wedge represents a system of numerous east-vergent tectonic slices. These tectonic slices. tens to hundreds of meters thick. are composed of various siliciclastic rocks, which were formed at the convergent plate boundary, and subordinate oceanic pelagic cherts and basalts, and hemipelagic siliceous and tuffaceous-siliceous mudstones. The siliciclastic deposits include trench-fill mudstones and turbidites and draping sediments. The structure of the accretionary wedge was presumably formed owing to off-scraping and tectonic underplating. The off-scraped and tectonically underplated fragments were probably tectonically juxtaposed along out-of-sequence thrusts with draping deposits. The radiolarian fauna was used to constrain the ages of rocks and time of the accretion episodes in different parts of the accretionary wedge. The defined radiolarian assemblages were correlated with the radiolarian scale for the Tethyan region using the method of unitary associations. In the Nabil zone, the age of pelagic sediments is estimated to have lasted from the Late Jurassic to Early Cretaceous (Barremian); that of hemipelagic sediments, from the early Aptian to middle Albian; and trench-fill and draping deposits of the accretionary complex date back to the middle-late Albian. In the Rymnik zone, the respective ages of cherts, hemipelagic sediments, and trench facies with draping deposits have been determined as Late Jurassic to Early Cretaceous (middle Albian), middle Aptian-middle Cenomanian, and middle-late Cenomanian. East of the rear toward the frontal parts of the accretionary wedge, stratigraphic boundaries between sediments of different lithology become successively younger. Timing of accretion episodes is based on the age of trench-fill and draping sediments of the accretionary wedge. The accretion occurred in a period lasting from the terminal Aptian to the middle Albian in the western part of the Nabil zone and in the middle Cenomanian in the eastern part of the Rymnik zone. The western part of the Nabil zone accreted synchronously with the Kiselevka-Manoma accretionary wedge located westerward on the continent. These accretionary wedges presumably formed along a single convergent plate margin, with the Sakhalin accretionary system located to the south of the Kiselevka-Manoma terrane in the Albian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号