首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The detection of phyllosilicates and sulfates on Mars has revealed a complex aqueous history which suggests distinct geochemical environments separated temporally and spatially. Recent observations by MRO CRISM in Mawrth Vallis have shown that phyllosilicate deposits exhibit a specific stratigraphy, which remains incompletely understood. Moreover, MER Spirit has evidenced association between phyllosilicates, amorphous silica and sulfates. We investigated the hypothesis that these parageneses resulted from the acidic weathering of older phyllosilicate deposits. We exposed nontronite (Fe-rich smectite), montmorillonite (Al-rich smectite) and kaolinite to H2SO4 solutions at pH 0, 2 and 4, and at a temperature of 60 °C. After the acid treatment, a combination of mineralogical techniques was used to assess the degree of alteration of the three phyllosilicate minerals. XRF, XRD and ESEM measurements show that nontronite was the most unstable when acid leached, followed by montmorillonite and then kaolinite. Progressive acidic leaching of nontronite leads to alteration of the phyllosilicate to amorphous silica, along with Fe-sulfate and anatase, and the formation of an acidic Al,Fe-rich solution. Alteration of montmorillonite resulted in the formation of Fe-, Al-, Ca- and Mg-sulfates, and a Al-rich leaching solution. Comparatively, leaching of kaolinite resulted in the formation of Al-sulfates and a Al-rich solution as well, with only slight alteration of the primary mineralogical features. The effects of acid leaching of the phyllosilicates were also observed in NIR reflectance spectra, allowing a comparison with CRISM spectra from Mawrth Vallis. Based on our results, we propose a new model where acid leaching of mixed phyllosilicate deposits leads to kaolinite overlaying montmorillonite, which in turn caps Fe,Mg-smectites. Leaching of cations and subsequent evaporation leads to sulfate deposits, as supported by geochemical modeling, while amorphous silica remains as a residue. Depending on the intensity (pH) and length of exposure of acidic leaching, our model can explain the stratigraphic distribution of phyllosilicates, and the association of sulfates, silica and smectites.  相似文献   

2.
Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or ohvine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from< 100 Å to a few hundred Å. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystal-linity of saponite. by contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of Å thick. The Si/(Si+Al) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe+Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+Al) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite±mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.Contribution No. 488 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan  相似文献   

3.
Biotites from unaltered Sn granites in southeastern Australia are highly ferroan, Fe/(Fe+Mg+Mn) >0.75, whereas biotites from barren granites are less Ferich, Fe/(Fe+Mg+Mn)<0.65. Similar distinctions between Sn-specialized and barren granites can be observed in the other phyllosilicates, especially chlorite. Biotites and muscovites from Sn granites have greater Be, Cs, (F), Li, Mo, Rb, Sc, Sn, Tl, (Y) and Zn and lesser Ba abundances than corresponding micas from barren granites in the same district. Alteration of barren granites also results in similar enrichments in micas. Of these elements, Sn and Zn, because of their abundance and retention during degradation of biotite to chlorite, are the best trace element discriminants between barren granites and Sn granites/altered granites, with the Sn content of phyllosilicates being a better indicator than Zn. Rutile inclusions within phyllosilicates from unaltered Sn granites have Nb2O5 contents up to 26%. The Ta content tends to increase with Nb content but especially high Ta contents occur in the rutile inclusions of granites that give rise to pegmatitic deposits. The rutile inclusions in Sn granites may also have substantial Sn and W contents. The rutiles of barren granites have low Nb, Ta, Sn and W contents but Sn and W increase with alteration. Together, the ratio Fe/(Fe+Mg+Mn) and Sn contents in phyllosilicates and rutile compositions can be used to identify the Sn mineralization potential of a granite.  相似文献   

4.
TEM, HRTEM, HVEM and SEM methods, coupled with energy dispersive X-ray analysis, have been used to study the microstructure and the phases comprising the matrix of carbonaceous chondrites Murchison, Cold Bokkeveld, Nawapali and Cochabamba. A wide variety of phyllosilicate morphologies occurs in each. Very small crystals and clasts of olivine, pyroxene and other unhydrated minerals are mixed intimately with the phyllosilicates. Intergrowths of carbonates and Sulfides within the phyllosilicates also occur, as well as a ubiquitous spongey material which is difficult to characterize, but contains elementary phyllosilicate units and embryo crystals. The identifiable large crystalline phyllosilicates are principally Fe-rich serpentine-group minerals and intermediate more Mg-rich chrysotilelike group members, with characteristic ~ 7.0–7.4 Å basal layer spacings. Complex interlayered and intergrown hydrous minerals also occur associated with the spongey material, and other poorly crystalline silicates and finely divided Fe-Ni sulphides. Fe/Si and Mg/Si ratios vary on a sub-micron scale, and the morphologies of the larger phyllosilicate crystals correlate broadly with these variations. Small crystals of sodium chloride and potassium chloride have been identified, occluded within a predominantly organic mass.The matrix minerals have a multistage history of formation in which the effects of aqueous alteration are dominant. Few, if any, of matrix minerals can be unmodified nebular condensates, although some clasts and inclusions have escaped alteration and predate the alteration process.  相似文献   

5.
Spheroids of some m size are described from the lead-zinc-ore of Tynagh, Ireland. The main element composition of the spheroids is Si, Zn, S, Al, K, Fe with some Ca and Mg in order of decreasing amount. In most spheroids which are rich in Zn-and poor in Fe-content an almost constant ratio of (Fe+Zn):S and Si:Al:K gave reason to assume the mineral phases sphalerite with various iron content and phyllosilicates as the main constituents. It is suggested that the spheroids were formed by similar processes Degens et al. (1972) described for recent formation of sphalerite globules in the Lake Kivu.  相似文献   

6.
An inverse Monte Carlo (MC) method was developed to determine the distribution of octahedral cations (Al3+, Fe3+, and Mg2+) in bentonite illite–smectite (I–S) samples (dioctahedral 2:1 phyllosilicates) using FT–IR and 27Al MAS NMR spectroscopies. FT–IR allows determination of the nature and proportion of different cation pairs bound to OH groups measuring the intensities of OH-bending bands. 27Al MAS NMR data provide information about cation configuration because 27Al MAS NMR intensity depends on Fe distribution. MC calculations based on FT–IR data alone show Fe segregation by short-range ordering (Fe clusters within 9 to 15?Å from a given Fe atom). Fe segregation increases with illite proportion. MC calculations based on IR and 27Al NMR simultaneously yield similar configurations in which Fe clusters are smaller. The latter calculations fail to build appropriate cation distributions for those samples with higher number of illite layers and significant Fe content, which is indicative of long-range Fe ordering that cannot be detected by FT–IR and 27Al MAS NMR. The proportion of Mg–Mg pairs is negligible in all samples, and calculations, in which the number of Mg atoms, as second neighbours, is minimised, create appropriate configurations.  相似文献   

7.
Summary Lithogeochemistry of komatiites can be useful in exploration for nickel sulfides in two distinct ways: indirectly, through identification of favourable volcanic environments, and more directly, through identification of signatures of crustal contamination and sulfide liquid segregation. However, the discrimination between mineralised and unmineralised sequences is not straightforward.Komatiite chemistry is influenced by a variety of primary magmatic variables, overprinted to various degrees for various elements by the effects of metasomatic alteration. Once highly metasomatised samples have been filtered, primary magmatic signatures are largely retained for the elements Mg, Fe, Si, Al, Ti and Cr, even in cases of extensive CO2 metasomatism and talc-carbonate alteration. Incompatible trace elements such as Zr and REE are modified to some degree by alteration, particularly in cumulate rocks, but there is evidence for some retention of primary signatures.Favourable volcanic environments, i.e. those containing large-volume lava pathways, can be identified on the basis of their distribution and ratios of whole rock Mg, Fe, Ni, Cr and Ti. Nickel depletion can be recognised in some cases of large mineralised systems where large volumes of sulfide formed at low silicate:sulfide (R) ratios, but is not effective in finding small high-grade ore shoots. PGE in low-S rocks do not appear to be an effective discriminant, owing to the local scale of S-saturation.Crustal contamination is indicated in some mineralised suites on the basis of enriched ratios of strongly to weakly incompatible lithophile elements in fractionated lavas, but the effects of alteration are significant and may be misleading. On the whole, mineralised sequences tend to have more enriched signatures than unmineralised ones, but there may be many false positives and negatives, and if the most CO2-metasomatised suites are discounted the contrast largely disappears. Overall, the presence of Ni-enriched sulfides is by far the best lithogeochemical indicator there is, and it may be the only really effective one.  相似文献   

8.
201、325和706铀矿床蚀变带绿泥石研究   总被引:3,自引:0,他引:3  
以岩矿鉴定结果和电子探针绿泥石分析数据为依据,将325、706花岗岩型铀矿床蚀变带绿泥石分为假象绿泥石和鳞片状绿泥石。后者由前者转变而成,转变过程中存在着铁的迁出与镁的加入,迁出的铁形成赤铁矿,可能是造成碱性蚀变带呈红色的原因之一。201、325铀矿床蚀变带绿泥石为铁镁绿泥石和蠕绿泥石,706铀矿床蚀变带绿泥石主要属密绿泥石和铁斜绿泥石,少数属铁镁绿泥石。研究发现绿泥石变种由蚀变带原岩的∑FeO与MgO比值大小决定,与铀矿蚀变带是否为酸性和碱性没有必然的对应关系;绿泥石晶胞中镁羟基和铝羟基相对比例大小不同,是导致其吸收位置在2259-2262nm和2348-2359nm的诊断性吸收峰发育程度存在差别的原因。  相似文献   

9.
The distributions of Al 3+/Mg 2+ and Al 3+/ Fe 3+ were studied in the octahedral sheet of illites and smectites. Cation exchange interaction parameters J i, as first, second, third and fourth neighbours were calculated by means of empirical interatomic potentials. Several compositions with different interlayer cations and tetrahedral charge were studied in both Al/Mg and Al/Fe systems. The values of J i parameters were similar in all Al/Mg samples. From these J i values, a strong trend to form AlMg pairs was observed in the Al/Mg system. In the Al/Fe system, the values of J i are very small, indicating no preference for Al/Fe mixing. From these J i parameters, Monte Carlo simulations of octahedral cation ordering were performed. In the Al/Mg system, an order/disorder phase transition was observed obtaining a fully ordered distribution without presence of an MgMg pair, according to experimental data. Similar phase transitions were observed for the octahedral compositions Al/Mg 1/1 and 3/1. In the Al/Fe system an order/disorder phase transition was also detected but at very low temperature for illite and smectite. Complete Al/Fe mixing is observed in the most stable ordered distribution. This is consistent with experimental results for synthetic Fe/Al smectites.  相似文献   

10.
In this study, we have investigated and clarified the processes occurring during the alteration of SON68 glass – the reference nuclear glass for the waste arising from reprocessing of spent fuel from light water reactors – at 50 °C in Callovo-Oxfordian clay groundwater in presence of magnetite. Magnetite is known to be one of the iron corrosion products expected to be present in the vicinity of glass in geological disposal conditions. The effects of the amount of magnetite relative to the glass surface and the transport of aqueous species during glass alteration were studied. A first series of experiments was focused on the effect of various magnetite amounts by mixing and altering glass and magnetite powders. In a second series of experiments, magnetite was separated from the glass by a diffusive barrier in order to slow down the transport of aqueous species. Glass alteration kinetics were analyzed and solids were characterized by a multiscale approach using Raman Spectroscopy, Scanning and Transmission Electron Microscopy, Energy-Dispersive X-ray and Scanning Transmission X-ray Microscopy coupled with Fe L2,3-edge and C K-edge NEXAFS.It appears that glass alteration increases with the amount of magnetite and that the transport of aqueous species is a key parameter. Several processes have been identified such as (i) the silica sorption on the magnetite surface, (ii) the precipitation of Fe-silicates in the vicinity of the glass (iii) the precipitation of SiO2 on the magnetite surface, (iv) the incorporation of Fe within the alteration layer. Process (iv) was not frequently observed, suggesting local variations in geochemical conditions. Moreover, this process is strongly influenced by the transport of aqueous species as indicated by the morphology and composition of the alteration layers. Indeed, when glass and magnetite are homogeneously mixed, the glass alteration layer consists of a gel enriched in Fe having the same Fe(II)/Fe(III) ratio as in magnetite. When both materials are separated by a diffusive barrier, the glass alteration layer consists of a porous gel (not enriched in iron) in presence of a mixture of Fe-silicates with Fe having the same valence as in magnetite, rare-earth precipitates and phyllosilicates. These results suggest that Fe incorporation within the alteration layer changes depending on the distance and the time required for dissolved Fe originating from the magnetite to reach the glass.  相似文献   

11.
江满容  张均  刘文浩  熊索菲 《地球科学》2015,40(6):1034-1051
传统方法不能明确揭示泥河铁矿床多阶段热液叠加蚀变过程中元素迁移的继承性特征.运用等浓度图法(the isocon diagram),根据该区晚阶段蚀变都是叠加在稍早阶段蚀变之上的实际情况,采用早期蚀变岩石为原岩与稍晚期蚀变岩石的不活动元素拟合最佳等浓度方程,定量揭示主量元素在热液蚀变过程的迁移规律.研究表明,泥河铁矿床阳离子的沉淀顺序大致为:Na→Ca、Mg、Fe、P→Ca、Fe→Al、Si.从早到晚,元素的带入和带出是连续互补的,蚀变矿化作用是一个连续的过程.钠长石的大量出现是Na质沉淀的标志,代表铁矿化的开始;膏辉岩化是Ca、Mg、Fe质沉淀的表现形式,为磁铁矿体的近矿和容矿蚀变;次生石英岩化、高岭石化是早期迁移出的Al、Si质沉淀的结果,是磁铁矿化远程指示性蚀变.   相似文献   

12.
鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义   总被引:3,自引:0,他引:3  
夏菲  孟华  聂逢君  严兆彬  张成勇  李满根 《地质学报》2016,90(12):3473-3482
纳岭沟铀矿床位于鄂尔多斯盆地北部,具有明显的后期热液作用的特征,矿体空间展布主要受控于绿色-灰色砂岩的过渡界面,与绿泥石化的蚀变砂岩关系密切。通过对纳岭沟铀矿床不同颜色砂岩中的绿泥石进行详细的岩相学研究和电子探针化学成分分析,依据绿泥石的成因与共生矿物的关系,识别出绿泥石主要的3种类型:填隙物型绿泥石,片状与黄铁矿共生型绿泥石以及黑云母蚀变型绿泥石;同时通过绿泥石的Fe-Si图解确定了纳岭沟铀矿床不同颜色砂岩中的绿泥石主要为铁镁绿泥石和密绿泥石。根据Al/(Fe+Mg+Al)-Mg/(Fe+Mg)的关系图解确定出不同颜色砂岩中的绿泥石具有铁镁质流体和泥质两种来源,通过绿泥石中主要阳离子与镁的关系图解和计算得出的绿泥石形成温度共同确定出绿泥石是多期次的中低温热液流体作用的产物。综合研究表明,纳岭沟铀矿床的绿泥石形成至少经历了温度稍高的还原性流体和温度稍低的氧化性流体等两个期次的流体作用,稍高温的还原性流体与成矿关系更为重要。与绿泥石形成有关的热液流体作用不仅带入了部分铀,还促进了铀的活化和运移。  相似文献   

13.
Abstract Mafic phyllosilicates in metabasites affected by low-grade regional metamorphism from Wales and eastern North Greenland show variations in their structure and chemistry. These variations are related to four mineral zones in these metabasites, which are recognized on the presence/absence of various key calc-silicate minerals and also actinolite. Zones 1 and 2 equate with the zeolite facies, zone 3 with the prehnite–pumpellyite facies (or prehnite–actinolite facies in rocks with appropriate bulk rock composition) and zone 4 with the greenschist facies. Whilst variations in Fe/(Fe + Mg) in chlorite correlate closely with Fe/(Fe + Mg) ratios in the whole-rock, other chemical variations are clearly unrelated to whole-rock compositions. Contents of Aliv are seen to increase systematically in samples from zone 1 through to zone 4, which relate to an increase in temperature. Calibration of alteration temperatures, calculated using the chlorite geothermometer (based on Aliv contents) developed for meta-andesites in the Los Azufres geothermal system (Mexico), against x values (an estimate of the proportion of chlorite to swelling component in the mafic phyllosilicates) shows a decrease in the swelling component in passing from zone 1 to zone 4, i.e. with an increase in temperature. Calculated temperatures compare favourably with published stability estimates for the various key calc-silicates and actinolite. These data indicate that the chlorite geothermometer, although developed for meta-andesites from a hydrothermal system, does show a correlation with temperatures estimated from calc-silicate assemblages in metabasites affected by low-grade metamorphism developed on a regional scale.  相似文献   

14.
Petrographic observations and analyses of CM matrices are consistent with their origin as in situ low temperature (<400°K) aqueous alteration products in a parent body regolith. At least four different phyllosilicates were tentatively characterized in Murray and Murchison meteorites, in addition to Fe- and Mg-serpentines in Nogoya. In comparison with bulk meteorite compositions, all phyllosilicates and bulk matrices show enrichment of K relative to Na. Possible loss of Na and possibly some Cl, with addition of H2O and CO2 and water-soluble organic compounds during alteration, indicates a partially open system during alteration. Poorly characterized phases (PCP) are fine-grained (< 1 μm) admixtures of variable proportions of phyllosilicates, carbonaceous matter and opaque oxides of sulfur with high Fe, Ni and Cr contents. Calcite and some magnetite show paragenetic overlap with PCP and phyllosilicates. Carbonaceous matter is largely associated with PCP in altered CM matrices. In the unaltered CV Allende, carbonaceous matter is concentrated on olivine surfaces as a micromounded coating, particularly in the dark haloes that surround some chondrules and aggregates. Precursive alteration material may have been analogous to similarly coated olivine mixed with smaller amounts of metal and sulfides.Synthesis of the water soluble organic compounds found in CM matrices may have occurred prior to or in the same environment as did aqueous alteration of the precursive phases. Preservation or partial preservation of this organic matter may reflect the degree of overlap in episodes of synthesis and alteration.Nogoya is 95% altered and has a bulk carbon content of 5.2 wt%, which is higher than any meteorite. In addition, it has the lowest measured 13C12C ratio of any other carbonaceous chondrite, except for Karoonda.  相似文献   

15.
Ferromanganese crusts were found in carbonates of tectonostratigraphic units located in the northern and southern areas of the eastern External Subbetic of the Betic Cordilleras (SE Spain). The crusts are associated with four stratigraphic discontinuities of the Jurassic pelagic swells sequences: D1 (Late Carixian-Early Domerian), D2 (Middle Toarcian-Early Bajocian), D3 (Middle Bathonian-Middle Oxfordian), D4 (Early Tithonian-Late Albian). Two main textural types of crusts are distinguished. Type I crusts are thin and characterized by the presence of goethite, quartz, albite and phyllosilicates. Moreover, they show Si, Al, Mg, Na, Ti and K contents close to the European Shale Composite contents and Fe/Mn ratios (>350) higher than type II crusts. Type II crusts occur as thicker banded laminae and/or macrooncoids. They consist mainly of goethite and Mn-oxyhydroxides, which are enriched in REE, Co, Ni and Cu and show a strong Ce positive anomaly. After stratigraphical, mineralogical and geochemical data, the crust formation would be produced by the exposition of bottom sediments during long periods to a thin layer of oxidizing sea and porewater enriched in metallic elements. The textural and compositional variations between crusts can be explained by taking into account the bathymetric conditions. In shallower swells, the precipitation of a thick layer of banded type II crusts and in deeper areas, thin type I crusts were formed. Organic influence was only important in crusts from D3 of the northern area where textural evidence indicates the existence of seasonal periodically alternation between organism accretion and fine sedimentation. These were preceded and followed by phases in which the inorganic precipitation of oxides prevailed together with the fine sedimentation.  相似文献   

16.
Within 5 million years after formation of calcium aluminium rich inclusions (CAI), high temperature anhydrous phases were transformed to hydrous phyllosilicates, mostly serpentines, which dominate the matrices of the most primitive carbonaceous chondrites. CMs are the largest group of meteorites to provide samples of this material. To understand the nature of the availability, and role of H2O in the early solar system - as well as the settings of aqueous alteration - defining CM petrogenesis is critical. By Position Sensitive Detector X-ray Diffraction (PSD-XRD), we determine the modal abundance of crystalline phases present in volumes >1% for a suite of CMs - extending Part 1 of this work that dealt only with CM2 falls (Howard et al., 2009) to now include CM2 and CM1 finds. CM2 samples contain 13-31% Fe,Mg silicates (olivine + pyroxene) and from 67% to 82% total phyllosilicate (mean 75% ± 1.3 2σ). CM1 samples contain 6-10% olivine + pyroxene and 86-88% total phyllosilicate. Magnetite (0.6-5.2%), sulphide (0.6-3.9%), calcite (0-1.9%) and gypsum (0-0.8%) are minor phases across all samples. Since phyllosilicate forms from hydration of anhydrous Fe,Mg silicates (olivine + pyroxene), the ratio of total phyllosilicate to total anhydrous Fe,Mg silicate defines the degree of hydration and the following sequence results (in order of increasing hydration): QUE 97990 < Y 791198 < Murchison < Murray < Mighei < ALHA 81002 < Nogoya ? Cold Bokkeveld ? Essebi < QUE 93005 < ALH 83100 < MET 01070 < SCO 06043. High activities of Al (mostly from reactive mesostasis) and Si help to explain the composition and structure of CM serpentines that are distinct from terrestrial standards. Our data allows inference as to CM mineralogy at the point of accretion and challenges the conceptual validity of progressive alteration sequences. Modal mineralogy also provides new insights into CM petrogenesis and hints at a component of aqueous alteration occurring in the nebula, in addition to on the CM parent body(ies).  相似文献   

17.
Orogenic or mesothermal quartz lodes in lower Palaeozoic Greenland Group metasedimentary rocks of the Reefton area have produced 67 tonnes (t) of gold prior to 1951, and recent exploration has identified new gold resources in several deposits, including the largest past producers, Blackwater and Globe-Progress. The metasedimentary rocks consist of alternating sandstone and mudstone beds that were metamorphosed to lower greenschist facies prior to being hydrothermally altered adjacent to the quartz lodes. The sandstones are feldspathic litharenites averaging Q65-F10-R25, with detrital grains of quartz, rock fragments, muscovite, and plagioclase and biotite that were altered to albite and chlorite, respectively, during metamorphism. Accessory minerals are graphite, apatite, zircon, tourmaline and titanite. Hydrothermal alteration of the sandstones has developed a mineral assemblage of K-mica, carbonate (dolomite, ankerite, ferroan magnesite and magnesian siderite), chlorite, pyrite and arsenopyrite. The abundance of hydrothermal chlorite is greater at Blackwater than at the other prospects studied. Hydrothermal alteration associated with the quartz lodes is marked by bleaching, magnesian siderite spots, disseminated arsenopyrite and pyrite and thin carbonate, quartz and sulphide veins. These trends are accompanied by increasing concentrations of S, As and Sb and decreasing Na, and a decrease of Fe and Mg in K-mica. The alkali alteration indices 3K/Al (representing K-mica) and Na/Al (representing albite) generally show antipathetic trends, with 3K/Al increasing near the lodes and Na/Al decreasing. These trends reflect the replacement of albite by K-mica. Carbonate alteration indices CO2/(Ca + Mg +Fe) and CO2/[Ca + Mg + Fe -0.5(S + As)] quantify the abundance of hydrothermal carbonates, but they show variable correlation with the lodes. They increase the width of the alteration halo in the hanging wall of the lodes at the Globe-Progress and General Gordon prospects, but the peak values are as far as 150 m from the lodes. By contrast, peak values of the carbonate alteration indices are within 10 and 2 m of the lodes, respectively, at the Merrijigs and Blackwater deposits. Data show that for deposits with wide hydrothermal alteration halos, such as at the Globe-Progress and General Gordon prospects, the use of a suite of geochemical indicators can assist exploration by indicating trends in hydrothermal alteration that provide vectors to mineralisation. They also increase the size of the exploration target. By contrast, the alteration halo of the Blackwater deposit is restricted to within less than 5 m of the quartz lode and, therefore, the geochemical indicators are of more limited assistance to exploration.  相似文献   

18.
新疆萨尔托海铬铁矿造矿铬尖晶石蚀变特征及指示意义   总被引:2,自引:0,他引:2  
本文通过对萨尔托海矿区25矿群矿体边部、接近围岩造矿铬尖晶石的镜下观察发现: 造矿铬尖晶石由三部分组成, 自核部至边部依次是未蚀变的核部(灰色)、早期蚀变的中间带(灰白色)和晚期蚀变的边部(浅灰色)。探针分析上述三部分的成分, 得出早期蚀变中Al大量流失, 而Fe发生富集, 晚期蚀变Al、Cr、Mg相对于早期蚀变发生富集, 而Fe大量流失。通过研究区造矿铬尖晶石与国外变质超基性岩副矿物铬尖晶石对比, 认为早期蚀变对应的低角闪岩相变质, 温度为550℃~600℃, 晚期蚀变对应的是绿片岩相变质, 温度为350℃~500℃, 核部对应蚀变环境介于低角闪岩相和高角闪岩相之间, 稳定温度高于600℃, 故未发生蚀变。通过分析区域变质特征并结合造矿铬尖晶石所处的空间部位, 认为晚期蚀变是达拉布特蛇绿岩定位后期区域构造作用的结果, 推测早期蚀变可能与蛇绿岩构造侵位有关。  相似文献   

19.
Hyperalkaline and saline radioactive waste fluids with elevated temperatures from S-SX high-level waste tank farm at Hanford, WA, USA accidentally leaked into sediments beneath the tanks, initiating a series of geochemical processes and reactions whose significance and extent was unknown. Among the most important processes was the dissolution of soil minerals and precipitation of stable secondary phases. The objective of this investigation was to study the release of Fe into the aqueous phase upon dissolution of Fe-bearing soil minerals, and the subsequent formation of Fe-rich precipitates. Batch reactors were used to conduct experiments at 50 °C using solutions similar in composition to the waste fluids. Results clearly showed that, similarly to Si and Al, Fe was released from the dissolution of soil minerals (most likely phyllosilicates such as biotite, smectite and chlorite). The extent of Fe release increased with base concentration and decreased with Al concentration in the contacting solution. The maximum apparent rate of Fe release (0.566 × 10−13 mol m−2 s−1) was measured in the treatment with no Al and a concentration of 4.32 mol L−1 NaOH in the contact solution. Results from electron microscopy indicated that while Si and Al precipitated together to form feldspathoids in the groups of cancrinite and/or sodalite, Fe precipitation followed a different pathway leading to the formation of hematite and goethite. The newly formed Fe oxy-hydroxides may increase the sorption capacity of the sediments, promote surface mediated reactions such as precipitation and heterogeneous redox reactions, and affect the phase distribution of contaminants and radionuclides.  相似文献   

20.
This paper deals with compositional variations in fault zones from a dynamic point of view. In the fault zonen consisting of silicates, relative accumulation of Si and Fe is noticed in response to the leaching-out of K, Na, and to a lesser extent, Mg, Ca and Al. The ordee of petrogenetic elements from stable to mobile is tentatively suggested as follows: Si→Fe→Mg→ Ca→Al→K→Na. The difference in ionic radius for these chemical elements is thought to be the major factor controlling dynamic differentiation. In the fault zones arc silicates on one side and carbonates on the other, and new minerals are recognized in tectonites. On the silicate side Ca and Mg increase but Si and Al decrease; and the opposite is true on the carbonate side. This phenomenon indicates that migration of elements in the fault zones is accelerated by dyna mic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号