首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation systems have been systematically applied to the mesoscale circulation environment of the California Current to demonstrate the performance and practical utility of the various components of ROMS 4D-Var. In particular, we present a comparison of three approaches to 4D-Var, namely: the primal formulation of the incremental strong constraint approach; the dual formulation “physical-space statistical analysis system”; and the dual formulation indirect representer approach. In agreement with theoretical considerations all three approaches converge to the same ocean circulation estimate when using the same observations and prior information. However, the rate of convergence of the dual formulation was found to be inferior to that of the primal formulation. Other aspects of the 4D-Var performance that relate to the use of multiple outer-loops, preconditioning, and the weak constraint are also explored. A systematic evaluation of the impact of the various components of the 4D-Var control vector (i.e. the initial conditions, surface forcing and open boundary conditions) is also presented. It is shown that correcting for uncertainties in the model initial conditions exerts the largest influence on the ability of the model to fit the available observations. Various important diagnostics of 4D-Var are also examined, including estimates of the posterior error, the information content of the observation array, and innovation-based consistency checks on the prior error assumptions. Using these diagnostic tools, we find that more than 90% of the observations assimilated into the model provide redundant information. This is a symptom of the large percentage of satellite data that are used and to some extent the nature of the data processing employed. This is the second in a series of three papers describing the ROMS 4D-Var systems.  相似文献   

2.
The critical role played by observations during ocean data assimilation was explored when the Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation system was applied sequentially to the California Current circulation. The adjoint of the 4D-Var gain matrix was used to quantify the impact of individual observations and observation platforms on different aspects of the 4D-Var circulation estimates during both analysis and subsequent forecast cycles. In this study we focus on the alongshore and cross-shore transport of the California Current System associated with wind-induced coastal upwelling along the central California coast. The majority of the observations available during any given analysis cycle are from satellite platforms in the form of SST and SSH, and on average these data exert the largest controlling influence on the analysis increments and forecast skill of coastal transport. However, subsurface in situ observations from Argo floats, CTDs, XBTs and tagged marine mammals often have a considerable impact on analyses and forecasts of coastal transport, even though these observations represent a relatively small fraction of the available data at any particular time.During 4D-Var the observations are used to correct for uncertainties in the model control variables, namely the initial conditions, surface forcing, and open boundary conditions. It is found that correcting for uncertainties in both the initial conditions and surface forcing has the largest impact on the analysis increments in alongshore transport, while the cross-shore transport is controlled mainly by the surface forcing. The memory of the circulation associated with the control variable increments was also explored in relation to 7 day forecasts of the coastal circulation. Despite the importance of correcting for surface forcing uncertainties during analysis cycles, the coastal transport during forecast cycles initialized from the analyses has less memory of the surface forcing corrections, and is controlled primarily by the analysis initial conditions.Using the adjoint of the entire 4D-Var system we have also explored the sensitivity of the coastal transport to changes in the observations and the observation array. A single integration of the adjoint of 4D-Var can be used to predict the change that occurs when observations from different platforms are omitted from the 4D-Var analysis. Thus observing system experiments can be performed for each data assimilation cycle at a fraction of the computational cost that would be required to repeat the 4D-Var analyses when observations are withheld. This is the third part of a three part series describing the ROMS 4D-Var systems.  相似文献   

3.
The four-dimensional variational assimilation (4D-Var) has been widely used in meteorological and oceanographic data assimilation. This method is usually implemented in the model space, known as primal approach (P4D-Var). Alternatively, physical space analysis system (4D-PSAS) is proposed to reduce the computation cost, in which the 4D-Var problem is solved in physical space (i.e., observation space). In this study, the conjugate gradient (CG) algorithm, implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process. The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed. In order to overcome the non-monotonic variation of gradient norm, a new algorithm, Minimum Residual (MINRES) algorithm, is implemented in the process of assimilation iteration in this study. Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function, greatly improves the convergence properties of 4D-PSAS as well, and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.  相似文献   

4.
赵军  高山  王凡 《海洋与湖沼》2021,52(5):1145-1159
海洋中尺度涡在本质上是属于满足准地转平衡的大尺度运动,因此理论上,其在短时间内的运动将主要受到准地转平衡关系的约束,而外部强迫场的影响在短期内不会明显改变其运动特征。基于上述思想,我们提出了一种基于四维变分同化初始场的中尺度涡旋预报方案。为了检验该方案的可行性,本文使用区域海洋模式(regional ocean modeling system, ROMS)和其内建的增量强约束四维变分同化(incremental strong constraint four dimensional variational, I4D-Var)模块,建立了一个南海海洋同化模拟系统。首先,通过I4D-Var方法将AVISO卫星高度计资料同化到海洋数值模拟中,获得了理想的中尺度涡同化模拟结果。同化、模式模拟和观测三者的中尺度涡统计结果表明,该同化系统模拟的南海中尺度涡的路径、半径、海表高度异常和振幅等特征信息与AVISO(Archiving ValidationandInterpolationofSatelliteOceanographicData)观测结果高度吻合,同时在深度上的分析表明,涡旋对应的温度、盐度和密度均得到有效的调整。然后,将该同化系统的模拟结果做为初始场,对某一特定时段的南海中尺度涡进行了后报模拟和结果的定量化分析。通过比较后报模拟与观测资料中对应涡旋的海表面高度异常(sea surface height anomalies, SSHA)相关系数、涡心差距和半径绝对误差,证明该方案的中尺度涡后报时效至少可达10 d以上。后报实验结果验证了该中尺度涡预报方案的可行性,从而为中尺度涡的预报提供一定的理论基础和可行性方案。  相似文献   

5.
We describe the development and preliminary application of the inverse Regional Ocean Modeling System (ROMS), a four dimensional variational (4DVAR) data assimilation system for high-resolution basin-wide and coastal oceanic flows. Inverse ROMS makes use of the recently developed perturbation tangent linear (TL), representer tangent linear (RP) and adjoint (AD) models to implement an indirect representer-based generalized inverse modeling system. This modeling framework is modular. The TL, RP and AD models are used as stand-alone sub-models within the Inverse Ocean Modeling (IOM) system described in [Chua, B.S., Bennett, A.F., 2001. An inverse ocean modeling system. Ocean Modell. 3, 137–165.]. The system allows the assimilation of a wide range of observation types and uses an iterative algorithm to solve nonlinear assimilation problems. The assimilation is performed either under the perfect model assumption (strong constraint) or by also allowing for errors in the model dynamics (weak constraints). For the weak constraint case the TL and RP models are modified to include additional forcing terms on the right hand side of the model equations. These terms are needed to account for errors in the model dynamics.Inverse ROMS is tested in a realistic 3D baroclinic upwelling system with complex bottom topography, characterized by strong mesoscale eddy variability. We assimilate synthetic data for upper ocean (0–450 m) temperatures and currents over a period of 10 days using both a high resolution and a spatially and temporally aliased sampling array. During the assimilation period the flow field undergoes substantial changes from the initial state. This allows the inverse solution to extract the dynamically active information from the synthetic observations and improve the trajectory of the model state beyond the assimilation window. Both the strong and weak constraint assimilation experiments show forecast skill greater than persistence and climatology during the 10–20 days after the last observation is assimilated.Further investigation in the functional form of the model error covariance and in the use of the representer tangent linear model may lead to improvement in the forecast skill.  相似文献   

6.
The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction of surface heat fluxes indicate that, given the ocean model used and its potential limitations, the heat flux data from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) used to impose surface conditions in the model are generally too low except in spring-summer, in the upwelling region, where they are too high. Comparisons with independent data provide confidence in the resulting forecast ocean circulation on timescales ~14 days, with less than 1.5 °C, 0.3 psu, and 9 cm RMS error in temperature, salinity and sea surface height anomaly, respectively, compared to observations.  相似文献   

7.
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.  相似文献   

8.
Effect of Langmuir circulation on upper ocean mixing in the South China Sea   总被引:2,自引:0,他引:2  
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well.  相似文献   

9.
Asynchronous data assimilation with the EnKF   总被引:3,自引:0,他引:3  
This study revisits the problem of assimilation of asynchronous observations, or four-dimensional data assimilation, with the ensemble Kalman filter (EnKF). We show that for a system with perfect model and linear dynamics the ensemble Kalman smoother (EnKS) provides a simple and efficient solution for the problem: one just needs to use the ensemble observations (that is, the forecast observations for each ensemble member) from the time of observation during the update, for each assimilated observation. This recipe can be used for assimilating both past and future data; in the context of assimilating generic asynchronous observations we refer to it as the asynchronous EnKF. The asynchronous EnKF is essentially equivalent to the four-dimensional variational data assimilation (4D-Var). It requires only one forward integration of the system to obtain and store the data necessary for the analysis, and therefore is feasible for large-scale applications. Unlike 4D-Var, the asynchronous EnKF requires no tangent linear or adjoint model.  相似文献   

10.
《Ocean Modelling》2009,26(3-4):173-188
We present the background, development, and preparation of a state-of-the-art 4D variational (4DVAR) data assimilation system in the Regional Ocean Modeling System (ROMS) with an application in the Intra-Americas Sea (IAS). This initial application with a coarse model shows the efficacy of the 4DVAR methodology for use within complex ocean environments, and serves as preparation for deploying an operational, real-time assimilation system onboard the Royal Caribbean Cruise Lines ship Explorer of the Seas. Assimilating satellite sea surface height and temperature observations with in situ data from the ship in 14 day cycles over 2 years from January 2005 through March 2007, reduces the observation-model misfit by over 75%. Using measures of the Loop Current dynamics, we show that the assimilated solution is consistent with observed statistics.  相似文献   

11.
Reducing systematic errors by empirically correcting model errors   总被引:2,自引:0,他引:2  
A methodology for the correction of systematic errors in a simplified atmospheric general‐circulation model is proposed. First, a method for estimating initial tendency model errors is developed, based on a 4‐dimensional variational assimilation of a long‐analysed dataset of observations in a simple quasi‐geostrophic baroclinic model. Then, a time variable potential vorticity source term is added as a forcing to the same model, in order to parameterize subgrid‐scale processes and unrepresented physical phenomena. This forcing term consists in a (large‐scale) flow dependent parametrization of the initial tendency model error computed by the variational assimilation. The flow dependency is given by an analogues technique which relies on the analysis dataset. Such empirical driving causes a substantial improvement of the model climatology, reducing its systematic error and improving its high frequency variability. Low‐frequency variability is also more realistic and the model shows a better reproduction of Euro‐Atlantic weather regimes. A link between the large‐scale flow and the model error is found only in the Euro‐Atlantic sector, other mechanisms being probably the origin of model error in other areas of the globe.  相似文献   

12.
In variational methods, coupled parameter optimization (CPO) often needs a long minimization time window (MTW) to fully incorporate observational information, but the optimal MTW somehow depends on the model nonlinearity. The analytical four-dimensional ensemble-variational (A-4DEnVar) considers model nonlinearity well and avoids adjoint model. It can theoretically be applied to CPO. To verify the feasibility and the ability of the A-4DEnVar in CPO, “twin” experiments based on A-4DEnVar CPO are conducted for the first time with the comparison of four-dimensional variational (4D-Var). Two algorithms use the same background error covariance matrix and optimization algorithm to control variates. The experiments are based on a simple coupled ocean-atmosphere model, in which the atmospheric part is the highly nonlinear Lorenz-63 model, and the oceanic part is a slab ocean model. The results show that both A-4DEnVar and 4D-Var can effectively reduce the error of state variables through CPO. Besides, two methods produce almost the same results in most cases when the MTW is less than 560 time steps. The results are similar when the MTW is larger than 560 time steps and less than 880 time steps. The largest MTW of 4D-Var and A-4DEnVar are 1 200 time steps. Moreover, A-4DEnVar is not sensitive to ensemble size when the MTW is less than 720 time steps. A-4DEnVar obtains satisfactory results in the case of highly nonlinear model and long MTW, suggesting that it has the potential to be widely applied to realistic CPO.  相似文献   

13.
A new version of the ocean data assimilation system (ODAS) developed at the Hydrometcentre of Russia is presented. The assimilation is performed following the sequential scheme analysis–forecast–analysis. The main components of the ODAS are procedures for operational observation data processing, a variational analysis scheme, and an ocean general circulation model used to estimate the first guess fields involved in the analysis. In situ observations of temperature and salinity in the upper 1400-m ocean layer obtained from various observational platforms are used as input data. In the new ODAS version, the horizontal resolution of the assimilating model and of the output products is increased, the previous 2D-Var analysis scheme is replaced by a more general 3D-Var scheme, and a more flexible incremental analysis updating procedure is introduced to correct the model calculations. A reanalysis of the main World Ocean hydrophysical fields over the 2005–2015 period has been performed using the updated ODAS. The reanalysis results are compared with data from independent sources.  相似文献   

14.
All numerical models are imperfect. Weak constraint variational data assimilation ( VDA ), which provides a treatment of the modelling errors, is studied; building on the approach of Vidard et al. (Tellus, 56 A, pp. 177–188, 2004). The evolution of model error ( ME ) is modelled using ordinary differential equations, which involve a scalar parameter. These approaches were tested using different high-resolution advection schemes. The first set of experiments were constructed to see if it is possible to account for (numerical) discretization error within such a framework. In other set of experiments, a systematic source of modelling error was introduced by deliberately specifying an incorrect value for the Coriolis parameter in the model. Results with observational state at half of the model state resolution, are also presented. We also discuss a method of estimating the scalar parameter in the ME through VDA . In all cases, the inclusion of ME provides reduction in forecasting errors. Also, our experiments indicate that different settings of the model (e.g. using different high-resolution advection schemes) would need different ME formulation. Results presented in this paper could be used to formulate sophisticated ME forms to account for systematic errors in higher dimensional models with complex advection schemes.  相似文献   

15.
A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA‘s TIROS operational vertical sounder (TOVS) observations are used in the experiments. A twodimensional variation assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analyses fields based on T213 results and routine observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are also carried out, which correspond respectively to the initialization scheme with two-dimensional variation (2D- Var), three-dimensional observational nudging and direct assimilation of satellite data. It is found that, comparing with the experiments without satellite data assimilation, the first two assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce by 18% at 12 h for 2D- Var and from about 16% at 24 h to about 35% at 48 h for observational nudging. The simulated results based on assimilating different kinds of satellite data are also compared.  相似文献   

16.
Dynamical downscaling is developed to better predict the regional impact of global changes in the framework of scenarios. As an intermediary step towards this objective we used the Regional Ocean Modeling System (ROMS) to downscale a low resolution coupled atmosphere–ocean global circulation model (AOGCM; IPSL-CM4) for simulating the recent-past dynamics and biogeochemistry of the Benguela eastern boundary current. Both physical and biogeochemical improvements are discussed over the present climate scenario (1980–1999) under the light of downscaling.Despite biases introduced through boundary conditions (atmospheric and oceanic), the physical and biogeochemical processes in the Benguela Upwelling System (BUS) have been improved by the ROMS model, relative to the IPSL-CM4 simulation. Nevertheless, using coarse-resolution AOGCM daily atmospheric forcing interpolated on ROMS grids resulted in a shifted SST seasonality in the southern BUS, a deterioration of the northern Benguela region and a very shallow mixed layer depth over the whole regional domain. We then investigated the effect of wind downscaling on ROMS solution. Together with a finer resolution of dynamical processes and of bathymetric features (continental shelf and Walvis Ridge), wind downscaling allowed correction of the seasonality, the mixed layer depth, and provided a better circulation over the domain and substantial modifications of subsurface biogeochemical properties. It has also changed the structure of the lower trophic levels by shifting large offshore areas from autotrophic to heterotrophic regimes with potential important consequences on ecosystem functioning. The regional downscaling also improved the phytoplankton distribution and the southward extension of low oxygen waters in the Northern Benguela. It allowed simulating low oxygen events in the northern BUS and highlighted a potential upscaling effect related to the nitrogen irrigation from the productive BUS towards the tropical/subtropical South Atlantic basin. This study shows that forcing a downscaled ocean model with higher resolution winds than those issued from an AOGCM, results in improved representation of physical and biogeochemical processes.  相似文献   

17.
A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA‘ s TIROS operational vertical sounder (TOVS) observations are used in the experiments. A three-dimensional variational (3D-Var) assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analysis fields based on the T213 results and conventional observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are carried out, which correspond respectively to assimilate different kinds of satellite data. It is found that, compared with the experiment without satellite data assimilation, the 3D-Var assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce from approximately 25% at 24 h to approximately 30% at 48 h for 3D-Var assimilation experiments.  相似文献   

18.
基于ROMS和4DVAR的沿轨与网格化SSH数据同化效果评价   总被引:1,自引:1,他引:0  
Remote sensing products are significant in the data assimilation of an ocean model. Considering the resolution and space coverage of different remote sensing data, two types of sea surface height(SSH) product are employed in the assimilation, including the gridded products from AVISO and the original along-track observations used in the generation. To explore their impact on the assimilation results, an experiment focus on the South China Sea(SCS) is conducted based on the Regional Ocean Modeling System(ROMS) and the four-dimensional variational data assimilation(4 DVAR) technology. The comparison with EN4 data set and Argo profile indicates that, the along-track SSH assimilation result presents to be more accurate than the gridded SSH assimilation, because some noises may have been introduced in the merging process. Moreover, the mesoscale eddy detection capability of the assimilation results is analyzed by a vector geometry–based algorithm. It is verified that, the assimilation of the gridded SSH shows superiority in describing the eddy's characteristics, since the complete structure of the ocean surface has been reconstructed by the original data merging.  相似文献   

19.
The temporal evolution of innovation and residual statistics of the ECMWF 3D‐ and 4D‐Var data assimilation systems have been studied. First, the observational method is applied on an hourly basis to the innovation sequences in order to partition the perceived forecast error covariance into contributions from observation and background errors. The 4D‐Var background turns out to be ignificantly more accurate than the background in the 3D‐Var. The estimated forecast error variance associated with the 4D‐Var background trajectory increases over the assimilation window. There is also a marked broadening of the horizontal error covariance length scale over the assimilation window. Second, the standard deviation of the residuals, i.e., the fit of observations to the analysis is studied on an hourly basis over the assimilation window. This fit should, in theory, reveal the effect of model error in a strong constraint variational problem. A weakly convex curve is found for this fit implying that the perfect model assumption of 4D‐Var may be violated with as short an assimilation window as six hours. For improving the optimality of variational data assimilation systems, a sequence of retunes are needed, until the specified and diagnosed error covariances agree.  相似文献   

20.
We present the background, development, and preparation of a state-of-the-art 4D variational (4DVAR) data assimilation system in the Regional Ocean Modeling System (ROMS) with an application in the Intra-Americas Sea (IAS). This initial application with a coarse model shows the efficacy of the 4DVAR methodology for use within complex ocean environments, and serves as preparation for deploying an operational, real-time assimilation system onboard the Royal Caribbean Cruise Lines ship Explorer of the Seas. Assimilating satellite sea surface height and temperature observations with in situ data from the ship in 14 day cycles over 2 years from January 2005 through March 2007, reduces the observation-model misfit by over 75%. Using measures of the Loop Current dynamics, we show that the assimilated solution is consistent with observed statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号