首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Summary. Spectral analysis of P and P coda from NTS explosions recorded at NORSAR shows that magnitudes based on spectral integration of P coda provide a significantly more precise measure of yield than those based on the initial P . Coda amplitudes and spectra are considerably less sensitive to near-source variations than the direct P . A plot of P -coda magnitude, after correcting for the effects of attenuation in the upper mantle and the source spectrum based on knowledge of approximate yield or mb , versus log yield appears to have a slope of unity. This implies that P coda from several stations (with different but known t * values) can be combined to improve the yield determinations further. Single station P coda from Soviet explosions can also be used to determine relative yields that appear to be at least as precise as those from Lg based on a network of stations.  相似文献   

9.
10.
A methodology is proposed for the quantification of volcanic explosions based on three parameters derived from broad-band seismic signals: the counter force of the eruption F , the power of the explosion P and the duration of the upward movement of the gas slug in the conduit to the free surface of magma, D . This methodology was applied to the 2004–2005 sequence of explosions at Volcán de Colima, Mexico. The broad-band records of more than 100 explosive events were obtained at a distance of 4 km from the crater. We determined the counter force of the eruption by modelling the low-frequency impulse of the seismic records of 66 volcanic explosions and estimated the power of 116 explosions from the spectra of the high-frequency impulse. The power of Colima explosions spans five orders of magnitude; the counter force spans four orders of magnitude. We show that the power of a volcanic explosion is proportional to the counter force of the eruption. These parameters may be used for the elaboration of a scale of volcanic explosions.  相似文献   

11.
12.
13.
14.
The purpose of this study is to develop a technique to discriminate artificial explosions from local small earthquakes ( M ≤ 4.0) in the time–frequency domain. In order to obtain spectral features of artificial explosions and earthquakes, 3-D spectrograms (frequency, time and amplitude) have been used. They represent a useful tool for studying the frequency content of entire seismic waveforms observed at local and regional distances (Kim, Simpson & Richards 1994). P and S(L g ) waves from quarry blasts show that the frequency content associated with the dominant amplitude appears above 10  Hz and Rg phases are observed at close distances. P and S(L g ) waves from the Tongosan earthquake have strong amplitudes below 10  Hz. For the Munkyong earthquake, however, a broader frequency content up to 20  Hz is found.
  For discrimination between small earthquakes and explosions, Pg/L g spectral ratios are used below 10  Hz, and through spectrogram analysis we can see different frequency contents of explosions and earthquakes. Unfortunately, because explosion data recorded at KSRS array are digitized at 20  sps, we cannot avoid analysing below 10  Hz because of the Nyquist frequency. In order to select time windows, the group velocity was computed using multiple-filter analysis (MFA), and free-surface effects have been removed from all three-component data in order to improve data quality. Using FFT, a log-average spectral amplitude is calculated over seven frequency bands: 0.5 to 3, 2 to 4, 3 to 5, 4 to 6, 5 to 7, 6 to 8 and 8 to 10  Hz. The best separation between explosions and earthquakes is observed from 6 to 8  Hz. In this frequency band we can separate explosions with log ( Pg/L g ) above −0.5, except EXP1 recorded at SIHY1-1, and earthquakes below −0.5, except the Munkyong earthquake record at station KMH.  相似文献   

15.
16.
17.
18.
19.
Summary. The statistical capability of the m b: M s discriminant for the discrimination of earthquake and explosion populations is examined by application of discriminant functions to a group of 83 explosions and 72 earthquakes in Eurasia. Equations are derived for the probability that an event is an earthquake or an explosion. The positive sign of DIS in the decision index equation, DIS i = 34.3383 – 11.9569 mb t + 7.1161 M si , indicates that the event i is an earthquake. Its negative sign indicates that event i is an explosion. The probability of correct classification for an event, P i , is related to its DIS i value, by P i = [1-exp (DIS i )]−1, where a large, positive DIS indicates a high probability that an event is an earthquake and a large, negative DIS indicates a high probability that an event is an explosion. The discrimination line M s = 1.680 m b– 4.825, or m b= 0.595 M s+ 2.872 very successfully separates the explosion population from the earthquake population. The points on this line have an equal chance of being an earthquake or an explosion; moreover, for any event, the distance parallel to the M s-axis from the point representing that event in the m b: M s plane to this line is a measure of the probability for the correct classification of that event.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号