首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Direct dating of W and WSn deposits by wolframite is more reliable relatively to gangue mineral and important for understanding their timing and genesis. However, such analysis still lacks of homogeneous wolframite standard recently. Due to containing considerable and variable common lead, and inhomogeneous in different grains, the wolframite sample of MTM, which is a promising candidate reference material proposed by previous studies, is not suitable as a primary standard for wolframite UPb dating by LA-ICP-MS using the normal normalization method as zircons. In this contribution, a modified normalization method is established for wolframite UPb dating, in which NIST612 or 614 and MTM are used for correction of PbPb and UPb ratios, respectively. Wolframite UPb dating are performed on the Langcun, Xihuashan, Piaotang, Shamai W or WSn deposits and the Baiganhu ore district, the obtained lower intercept 206Pb/238U ages are comparable with the ages from syngenetic molybdenite, cassiterite, muscovite and the genetically related granites, as well as wolframite by water vapor-assisted ns-LA-ICP-MS UPb dating method. The results of this analysis demonstrate that the robust age for W mineralization can be determined by LA-ICP-MS UPb dating of wolframite using this modified calibration method. Mineralization ages of 125–130 Ma by directly dating of metal minerals for the Langcun W, Jianfengpo Sn and large-size Xianglushan W deposits confirm that there exists an important WSn mineralization event in this period. The close temporal and spatial correlation indicates the granites and W-Cu-Mo-Pb-Zn-Sn mineralization have a genetic relationship with each other and are resulted from the same tectonic-magmatic-hydrothermal events during 140 to 120 Ma in South China.  相似文献   

2.
The complex evolutionary history of collision-related suture zones in the western Qiangtang is poorly understood, due to the lack of pivotal magmatic and tectonic records. The Chem Co intermediate-felsic batholith is situated in the westernmost section of Qiangtang, where it intruded into the Upper Paleozoic metamorphic sedimentary series and was cut by Late-Cenozoic active normal faults. Here, we present evidence from field observations, geochemistry, zircon UPb and Hf isotopes, and mica 40Ar39Ar analysis of these granitoid rocks. Zircon UPb ages ranging from 107.3 ± 1.4 to 123.7 ± 1.7 Ma reveal that this magmatism initiated in the Early Cretaceous. Mica 40Ar39Ar yield plateau ages from 99 to 118 Ma suggest rapid emplacement into the cold crust without disturbance by subsequent >320 °C tectono-thermal events. Major element geochemistry shows these granitic rocks are enriched in Al, depleted in Ca, lie mostly within the high–K calc–alkaline series and have peraluminous features. Mineral modes that lack amphibole but contain muscovite, together with the geochemical characteristics, indicate an S–type granite affinity. Furthermore, the rocks are strongly enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE), and are moderately to strongly depleted in high field strength elements (HFSE) and heavy rare earth elements (HREE), thus indicating typical characteristics of arc-related magmatic rocks. Considering the petrogenesis, geochemical features, zircon UPb ages, negative zircon εHf(t) values, similarity with the southwestern Qiangtang intrusions, and the geological setting, we conclude that the Chem Co granite was derived from the anatexis of crustal lithosphere through a “soft” collision associated with the continuing northwards subduction of the Bangong–Nujiang Tethyan (BNT) Ocean. We propose that the final closure and termination of the western segment of the BNT Ocean was completed later than 107 Ma.  相似文献   

3.
The ca. 3.07 Ga volcanic rocks of the Dominion Group, South Africa, represent the oldest example of intracontinental, rift-related volcanism on the Archaean Kaapvaal craton. The volcanic assemblage comprises a >2 km-thick succession of mafic-intermediate lavas interlayered with felsic lavas and pyroclastic rocks. Textural and geological features indicate emplacement in a subaerial environment probably in an incipient intracontinental rift. We report SHRIMP UPb zircon ages, elemental and Nd-isotope bulk-rock analyses of drill core samples and interpret their petrogenesis in the context of a Mesoarchaean continental setting. The UPb zircon ages of four felsic samples from different stratigraphic levels yielded the same dates, resulting in a pooled 207Pb/206Pb age of 3074 ± 5 Ma. Primitive mantle-normalised incompatible trace element concentrations show enriched patterns with fractionated rare earth elements over high field-strength elements and negative anomalies of Nb and Ta relative to La.Initial εNd values for mafic and felsic rocks from −1.0 to −0.2 indicate melting of sources comprising time-integrated incompatible element-enriched mantle. The combined trace element and SmNd isotopic data suggest that the enrichment of incompatible elements and the low εNd values in the most primitive basalt samples (Mg# of 65–67) can be explained with contamination of asthenosphere-derived melts with crustal material or melting of an incompatible element-enriched upper mantle. The chemical compositions of the Dominion Group and Pongola Supergroup represent a significant petrogenetic departure from earlier Archaean (>3.6–3.1 Ga) magmatism as recorded in the Kaapvaal craton, which was dominated by komatiite-basalt volcanism and tonalite-trondhjemite-granodiorite intrusions. This change reflects the transition from a “greenstone belt type” tectonic setting to a failed intracontinental rift setting shortly after stabilisation of the Kaapvaal craton.  相似文献   

4.
In South China, black organic-rich shales in the lower Cambrian Niutitang Formation host a NiMo polymetallic sulfide layer that discontinuously extends over ~1600 km. Seawater and hydrothermal origins are among the many suggested hypotheses and are still under debate. In order to discriminate Zn sources, we report Zn isotopes in NiMo polymetallic sulfide layers and their host shales from the Nayong and Zunyi locations in Guizhou province and the Zhangjiajie section in Hunan province. In each section, host organic-rich shales show homogeneous Zn isotope compositions which likely resulted from quantitative scavenging of dissolved Zn from seawater under euxinic conditions. The difference in the average δ66Zn values of organic-rich shales between the two sections in Guizhou (0.76 ± 0.09‰) and one section in Hunan (0.59 ± 0.10‰) might reflect variations of Zn isotope gradient with the depth of seawater. Therefore, the organic-rich sediments need not always represent an isotopically light Zn sink, which is dependent on Zn isotope fractionation in the local basin. However, the δ66Zn values in the NiMo polymetallic sulfide layers are different from those of their host shales, indicating that these sulfide layers did not inherit the Zn isotope signal of seawater. Based on the regular increasing trend in δ66Zn values from Nayong (0.54 ± 0.06‰) to Zhangjiajie (1.34 ± 0.09‰) and the presence of PbZn mineralization in the Dengying/Doushantuo Formations, we argue that hydrothermal fluids associated with PbZn mineralization could be a major source of Zn in NiMo sulfide layers, especially in the Nayong location. A possible model is that the hydrothermal fluids related to MVT-type mineralization got overprinted on a multiple-sourced synsedimentary sulfide-rich layer. We provide additional evidence that Zn isotopes have great potential as a tracer of metal source and can be applied to similar types of mineralization as e.g., the late Devonian Ni-Zn-PGE Nick deposit (Selwyn Basin, Canada) or elsewhere.  相似文献   

5.
The Pailin Crystalline Complex, which consists of amphibolites, metagabbros, and felsic igneous rocks, is located in western Cambodia. We used the geochemistry of the amphibolites and the zircon UPb ages of felsic igneous rocks to constrain the origin of the Pailin Crystalline Complex and to gain insights into the tectonic framework of Southeast Asia. Geochemical analyses indicate that the amphibolites are normal (N-type) mid-ocean ridge basalts, similar to the Sa Kaeo Back-arc Basin basalts of southeastern Thailand. The zircon UPb ages are 283 ± 2 Ma (anorthosite dike), 280 ± 2 Ma (aplite dike), and 275 ± 2 Ma (plagiogranite). The geochemistry and detrital zircon UPb ages of sandstones adjacent to the Pailin Crystalline Complex suggest that they are sediments that filled the Sa Kaeo Back-arc Basin during the Triassic. We infer that the Pailin Crystalline Complex is part of a dismembered ophiolite related to the back-arc basin, and that the igneous rocks formed during the Early Permian. Most of the metamorphism occurred during continental collision in Southeast Asia. However, the amphibolites of the Pailin Crystalline Complex also experienced ocean-floor metamorphism at a back-arc spreading center, in a tectonic setting similar to that of the mafic metamorphic rocks of the Nan Back-arc Basin, northern Thailand. We conclude that the Pailin Crystalline Complex is the southernmost extension of a back-arc basin related to subduction of Paleo-Tethys oceanic crust and the Sukhothai Arc.  相似文献   

6.
The Baishaziling greisen-type tin deposit is located in the Dayishan ore field, Nanling Range, Southern China. In this study, for the first time, we present both zircon and cassiterite UPb dating, whole-rock elements, zircon LuHf and apatite Nd isotopic compositions to better constrain the petrogenesis of granite and its genetic link with Sn mineralization. Zircon UPb ages of fine-grained granite and coarse-grained granite are 154 ± 1.8 Ma and 153 ± 2.1 Ma, respectively, which are consistent with the cassiterite UPb dating of 154 ± 5.4 Ma, implying genetic relationship between the Baishaziling granite and tin metallogenesis. The Baishaziling granites exhibit high SiO2, K2O + Na2O, Zr + Nb + Ce + Y contents, low P2O5 and Sr contents, and high ratios of Ga/Al, TFeO/(TFeO + MgO), implying A-type granite affinity with characteristics of high-K calc-alkaline and weakly peraluminous. The zircon εHf(t) values and apatite εNd(t) values of the granite vary from ?4.46 to ?1.81 and ?8.37 to ?7.10, with two-stage Hf and Nd model ages of 1.40 to 1.50 Ga and 1.52 to 1.64 Ga, indicating that they were generated by the partial melt of the Proterozoic basement with the involvement of mantle magma. In addition, formation of Dayishan granite was likely associated with an intraplate extensional setting caused by the subduction of the Palaeo-Pacific plate. The Baishaziling reduced granites have high stannum and boron contents, which are in favor of the tin mineralization.  相似文献   

7.
Geochemical and iron isotopic compositions of magnetite, ilmenite and pyrite separates from the FeTi oxide ores hosted in the Damiao anorthosite-type FeTi ore deposit were analyzed to investigate sub-solidus cooling history of the titanomagnetite. The FeTi oxides form two series of solid solutions, namely, ulvöspinel-magnetite (Usp-Mtss) and hematite-ilmenite (Hem-Ilmss) solid solutions. The magnetite separates have 14–27 mol% ulvöspinel, while the ilmenite separates have 5–8 mol% hematite. Major element compositions of the mineral separates suggest that the ilmenites were mainly exsolved from the Usp-Mtss by oxidation of ulvöspinel in the temperature range of ~820–600 °C and experienced inter-oxide re-equilibration with the magnetites. Associated with the exsolution is the substantial inter-mineral iron isotope fractionation. The magnetite separates are characterized by high δ57Fe (+0.27 − +0.65‰), whereas the ilmenite separates have lower δ57Fe (−0.65 to −0.28‰). Two types of pyrite are petrographically observed, each of which has a distinctive iron isotope fingerprint. Type I pyrite (pyriteI) with higher δ57Fe (δ57Fe = +0.63 − +0.95‰) is consistent with magmatic origin, and type II pyrite (pyriteII) with lower δ57Fe (δ57Fe = −0.90 to −0.11‰) was likely to have precipitated from fluids. Iron isotopic fingerprints of the pyriteI probably indicate variations of oxygen fugacity, whereas those of the pyriteII may result from fluid activities. The iron isotopic fractionation between the magnetite and ilmenite is the net result of sub-solidus processes (including ulvöspinel oxidation and inter-oxide re-equilibration) without needing varying oxygen fugacity albeit its presence. Although varying composition of magnetite-ilmenite pairs reflects variations of oxygen fugacity, inter-oxide iron isotopic fractionation does not.  相似文献   

8.
Bima Formation volcanic rocks, which record the history of Neo-Tethyan subduction, are found within the central and eastern segments of the southern Lhasa subterrane, Tibetan Plateau. Zircon UPb dating, whole-rock major and trace element analysis, and Sr–Nd–Pb–Hf isotopic compositions of Bima Formation volcanic rocks from the central segment of the southern Lhasa subterrane were used to constrain the magmatic and tectonic evolution of the Lhasa terrane during the early Mesozoic. Zircon UPb dating of five samples yielded consistent ages of 184.3 ± 2.4 to 176.8 ± 3.5 Ma. The dominant volcanic rock types within the Bima Formation are basalts, basaltic andesites, andesites, and dacites, which are enriched in the large-ion lithophile elements (e.g., Rb, Sr, and Ba) and depleted in high-field-strength elements (e.g., Nb, Ta, and Ti). (87Sr/86Sr)t ratios are low (0.702900–0.704146), εNd(t) and εHf(t) values are high and positive (+4.4 to +6.9 and + 9.6 to +15.7, respectively), and Pb isotope ratios are homogeneous (initial 206Pb/204Pb = 18.28–18.40; 207Pb/204Pb = 15.53–15.56; 208Pb/204Pb = 38.21–38.38). Combining the new data with those from a previous study of Bima Formation volcanic rocks from the eastern segment of the southern Lhasa subterrane indicates that the Bima Formation formed between the Middle Triassic and Early Jurassic. It suggests that more widespread early Mesozoic volcanic rocks in the southern margin of the Lhasa terrane. The basaltic rocks of the Bima Formation were generated by partial melting of a depleted mantle wedge metasomatized by slab-derived fluids, and subsequently experienced fractional crystallization without significant crustal contamination. The andesitic and dacitic rocks were formed by fractional crystallization of the basaltic magma. Our study indicates that the Bima Formation volcanic rocks were generated within a continental island arc setting related to northward subduction of the Neo-Tethyan oceanic slab during the early Mesozoic.  相似文献   

9.
Investigation of the ~2400-km-long Tan–Lu Fault Zone (TLFZ) in eastern China is the key to understanding how the Izanagi Plate in the western Pacific Basin and the East Asian continental margin responded to global plate reorganization during the mid-Cretaceous. We present new structural and geochronological data to show that the central segment of the NNE–SSW-striking TLFZ underwent a phase of sinistral transpression after the Early Cretaceous rifting. The resultant strike-slip structures are ductile shear belts in the south of the segment and brittle faults in the north. Quartz c-axis fabrics and other microstructures indicate deformation temperatures of 350–500 °C in different parts of the shear belts. The brittle faults were associated with the formation of NE–SW-trending folds and an angular unconformity between Lower and Upper Cretaceous volcanic or sedimentary rocks. Fault-slip data indicate that sinistral faulting was the result of NS compression. UPb dating constrains the timing of sinistral faulting between 97 and 82 Ma (early Late Cretaceous). Integration of these and existing data demonstrates that the entire TLFZ underwent sinistral displacement at the beginning of the Late Cretaceous, consistent with continental-scale NS compression in eastern China. Such compression in the overriding plate was caused by rapid oblique subduction of the Izanagi Plate and reflected global plate reorganization at this time. Both the changes in the kinematics of the Izanagi Plate and the resultant variation of stress states in the continental margin around the mid-Cretaceous are ascribed to this plate reorganization.  相似文献   

10.
The Abu Dabbab rare-metal granite in the Eastern Desert of Egypt is a highly-evolved alkali-feldspar granite with transitional magmatic-hydrothermal features. Extreme geochemical fractionation and the associated significant TaSn resource make the Abu Dabbab intrusion an important feature in the metallogenic evolution of the Arabian-Nubian Shield. UPb dating by laser ablation sector field (SF)-ICPMS analysis of igneous monazite yields a Concordia age of 644.7 ± 2.3 Ma, identical within uncertainty to a lower intercept Tera-Wasserburg isochron age of 644.2 ± 2.3 Ma obtained from hydrothermal cassiterite. Both ages place tight constraints on the timing of magmatic-hydrothermal processes in the Abu Dabbab granite which represents the oldest highly-evolved granite recognized so far in the Pan-African Arabian-Nubian Shield. Thus, the new ages also date the start of a period of late-orogenic metalliferous granite magmatism, when the basement of the Eastern Desert underwent a geodynamic transition from a compressive subduction-collision regime towards orogenic collapse in the late Cryogenian.  相似文献   

11.
Strontium (Sr), neodymium (Nd), and hafnium (Hf) isotopic analyses of different size-fractions of sediments collected from the Heihe River in the North Qilian Orogen (NQO) were carried out to trace the sediment sources and to determine the relationships between the Sr–Nd–Hf isotopic behaviors, and the grain-size and hydraulic sorting effects during fluvial transport. Our results demonstrate that the sand and suspended load samples collected from the same site have different Nd isotopic compositions, while their 87Sr/86Sr ratios are only slightly different. These features indicate that contributions to the sediments from different sources with different grain sizes vary greatly. Coarse-grained sand may more intuitively reflect the variations in local sources than the suspended load. The suspended load samples are distributed along the Clay Array on the ԐHf vs. ԐNd diagram due to zircon sorting. A similar NdHf decoupling phenomenon is widespread in the global oceans and large river systems, indicating that the NdHf isotopic behavior depends on the hydrodynamic sorting of minerals during fluvial transport. Moreover, the crustal accretion of the NQO from the depleted mantle occurred in the Proterozoic based on the constraints provided by the TDM values of the river sediments. The Nd isotopic compositional characteristics of the river sediments indicate that the NQO has an affinity with the Yangtze Craton. The determination of the basement tectonic affinity of the NQO significantly contributes to our understanding of the Neoproterozoic evolution of the Gondwana continental margin.  相似文献   

12.
Classification of mineralized areas into different geochemical classes in terms of prospectivity is crucial in the optimal management of exploration risk and costs. Machine learning (ML) algorithms can be served as appropriate alternatives for separating ore-related anomalies due to avoiding the assumptions of statistical distribution and compatibility with the multivariate nature of geochemical features. By hybridizing the ML with a metaheuristic algorithm called particle swarm optimization (PSO), this contribution aims to provide an innovative approach to optimize the classification of geochemical anomalies within the study area. The algorithm, PSO, is inspired by simulating the social behavior of flocks of birds in search of food. The Dagh-Dali ZnPb (±Au) mineral prospect in northwest Iran was subjected as a case study to examine the integrity of the proposed method. Mineralization-related features were extracted by applying principal component analysis (PCA) on metallogenic elements analyzed in soil samples as PC1 and PC2 with elemental assemblages of AgAuPbZn and PbZn, respectively. The silhouette index was employed to estimate the number of underlying geochemical clusters within the adopted feature space. To constitute a comparative analysis, two k-means clustering and PSO-based learning (PSO-L) algorithms were implemented to classify the gridded data of PC1 and PC2 within the study area. The results indicated that the use of PSO has improved the cost function of the clustering problem (up to 4%). Adapting the mineralization classes with the metallogenic evidence demonstrated by boreholes drilled in the study area indicated that PSO-L was superior to the traditional k-means method, improving the accurate estimation of subsurface mineralization classes by 7%. By overcoming the drawbacks of conventional methods for trapping at the local optima, PSO-based learning possesses the potential to highlight weak mineralization signals that are numerically located in boundary conditions. The results show that the proposed approach can serve as an effective medium for optimal modeling of geochemical classes and management of detailed exploration operations.  相似文献   

13.
The Weizigou gold deposit is located in the western Jiamusi Massif, Northeast China. Gold mineralization is hosted in the amphibolite, which intruded the granitic gneiss. Although the deposit shows similarities to iron-oxide–copper–gold deposits, the detailed ore-forming process remains uncertain. To determine the formation age, petrogenesis, and tectonic setting of the granitic gneiss and amphibolite, LA–ICP–MS zircon, titanite, and monazite UPb dating, whole-rock major- and trace-element analyses, and LA–ICP–MS in situ zircon Hf isotope analyses were conducted on samples from these rocks. The granitic gneiss yielded two age populations of 951–882 Ma, and ca. 500 Ma, with a monazite UPb concordia age of 501.5 ± 5.1 Ma. The amphibolite yielded a crystallization age of 292 Ma, consistent with the results for magmatic titanite UPb dating, and a metamorphic age of 272–258 Ma. The granitic gneiss contains typical aluminum-rich minerals, such as garnet and muscovite, mean SiO2 = 73.31 wt%, and molar ratio Al2O3/(CaO + K2O + Na2O) values of 1.02–1.07, indicating an S-type granite protolith. The amphibolite belongs to the tholeiitic basalt series and has low SiO2 and high MnO contents. These results, together with εHf(t) values and two-stage model ages ranging from ?9.5 to 2.3 and ? 0.3 to 5.7, and from 2010 to 1659 Ma and from 1331 to 947 Ma, respectively, allow us to infer that the parental magmas of the granitic gneiss and amphibolite were derived from the partial melting of Paleoproterozoic lower crust and the partial melting of metasomatized depleted mantle, respectively. The granitic gneiss is characterized by positive Th and Hf anomalies, and negative Nb, Ta, Sr and Ti anomalies, whereas the amphibolite is enriched in K, Rb, and depleted in Ba, Nb, Ti, and Zr. These geochemical features suggest that the S-type granite was formed in an active continental margin during the Neoproterozoic and underwent granulite-facies metamorphism during the early Paleozoic. The protolith of the amphibolite was gabbro that formed in an extensional setting (e.g., a backarc basin) associated with westward subduction of the Paleo-Pacific oceanic plate beneath the eastern Jiamusi Massif during the early Permian. The gold mineralization can most likely be attributed to contact metasomatic metamorphism of gabbro during the middle–late Permian.  相似文献   

14.
To better understand the origin of voluminous silicic rocks in a convergent continental margin, we conducted an integrated study in which we have obtained geochronological, mineralogical, and isotopic (including whole-rock Sr–Nd–Pb, in-situ zircon Hf) data of the Heri batholith in West Qinling on the NE Tibetan Plateau. The batholith is composed of metaluminous to weakly peraluminous granodiorites (235–233 Ma) and porphyritic granodiorites (230–223 Ma) with an I-type affinity. Both lithologies share similar major, trace elemental and SrNd isotopic compositions. Detailed elemental data demonstrate that these granodioritic rocks underwent fractional crystallization of hornblende and apatite, with plagioclase (i.e. sieve-textured plagioclase cores) accumulation to some extent. Except for porphyritic granodiorites, the Pb isotopes for other analyzed samples are characterized by high radiogenicity and uniformity ((206Pb/204Pb)t: 17.263–18.472, (206Pb/204Pb)t: 15.571–15.591, and (206Pb/204Pb)t: 38.032–38.304), together with limited variations in initial Sr ((87Sr/86Sr)t: 0.707251–0.708103) and Nd (εNd(t) = −7.1 to −6.3) isotopes with two-stage model ages (TDM2) of 1.58–1.52 Ga. These factors collectively point to a derivation from the Mesoproterozoic basement rocks at the lower crustal level, or a comprehensive mixing of different-age components that generated an average crustal residence age. The SrNd isotopic compositions of the porphyritic granodiorites are strikingly similar to those of granodiorites. Compared with the experimental melt compositions of amphibolites, the Heri granitoids are probably derived from an amphibolitic source under fluid-absent conditions due to the incongruent breakdown of amphibole and biotite. Based on the temporal–spatial distribution of granitic intrusions in West Qinling and the regional tectonic evolution, our interpretation is that the Heri batholith was formed during the initial collision between the North China Craton (NCC) and the South China Craton (SCC), which was accompanied by the closure of the Paleotethyan Ocean. Considering both previously published data and our new data, we propose that the Heri granitoids were mainly generated by the partial melting of lower crustal amphibolites, with minor mantle-derived melts.  相似文献   

15.
UPb geochronology along a north-south transect from central Sonora to northern Sinaloa in northwestern Mexico indicates several changes in provenance sources through time and space. Lower Cambrian arenites of the Proveedora Quartzite yield a single main age peak at 1075 Ma with minor Paleoproterozoic contribution. Arenites from the Sonobari Complex of southwestern Sonora-northwestern Sinaloa, purportedly assigned to the early Paleozoic, yield main peaks at 1424, 1662, and 1736 Ma, probably derived from the Yavapai and Mazatzal provinces, which are pervasively intruded by early Mesoproterozoic granites coeval to those forming the Granite-Rhyolite Province. Lower to Upper Ordovician units deposited on shelf, slope, and abyssal environments display very similar zircon age patterns, with main peaks ca. 2700 and 1850 Ma, indicating a large drainage system arising from the Archean cratons of Laurentia such as the Wyoming or Superior Provinces, and Paleoproterozoic sources similar to the Trans-Hudsonian orogen, which are older than the Yavapai Province. The Río Fuerte quartzites from southern Sonora-northern Sinaloa contain main peaks at 534, 542, and 637 Ma whose sources may be peri-Gondwanan blocks similar to Avalonia or Carolina terranes. A minor peak at 475 Ma suggests input from igneous suites reported from the Acatlán Complex in southern Mexico. UPb geochronology permit inference of a late Paleozoic collisional orogen in northwestern Mexico that was originated by the collision of Gondwanan blocks against southern Laurentia and outline the boundary between terranes related to continental blocks in the Pangaea supercontinent.  相似文献   

16.
The Adelaide Rift Complex is arguably one of the most complete and best studied Neoproterozoic to early Cambrian successions worldwide, preserving evidence of the breakup of Rodinia, two Cryogenian glaciations and the interglacial phase, and one of the best documented Ediacaran to early Cambrian biotic transitions. However, the complex and protracted tectono-sedimentary history of this 0.8–0.5 Ga province is still being debated. We present new and published UPb ages and Hf and O isotope data for detrital zircons from the Adelaide Rift Complex, representing the most complete assembly of such data for this succession. Deposition during initial mid-Tonia extension was largely sourced locally from rift shoulders. As the basin evolved from rift- to sag-phase following continental breakup in the Cryogenian the provenance regions extended to more distal late Mesoproterozoic terranes to west and northwest. New data from Sturtian Glacial Epoch deposits are consistent with termination of this event at 0.66 Ga, with most deposition during deglaciation. Uplift of the Musgrave region during the Ediacaran to early Cambrian Petermann Orogeny led to dominant sediment supply from that terrane at that time in the north. In the south, earliest Cambrian deposition followed local tectonism, initially revitalising local proximal basement sources. An abrupt change in provenance occurred at the base of the Cambrian Kanmantoo Group, the youngest sediment package in the south. Paleocurrent data indicates transports from the south, probably from formerly contiguous Antarctica, possibly reflecting the onset of convergent tectonics and deposition in a foreland basin, consistent with the near depositional age of the dominant detrital zircon population. Whilst several episodes of significant crustal reworking are identified in the Hf and O isotope data, many of the zircon TDM ages lie within 0.5 Ga of the UPb ages indicating that new additions from the mantle were common in the provenance regions.  相似文献   

17.
Although garnet UPb dating method has been reported recently, yet the accurate concordia 206Pb/238U ages and growth histories of multi generation of garnets based on ages were still lacked. LA-ICP-MS UPb dating on multi-generational grandite (grossular-andradite) garnet from the large Tonglvshan Cu-Fe-Au skarn deposit was applied in this study. Based on petrographic observation, in chronological order, three generation garnets have been distinguished, namely homogeneous Grt1-exo (in the exoskarn zone) and Grt1-endo (in the endoskarn zone), oscillatory zoning Grt2 and vein-type Grt3 cutting magnetite ores. LA-ICP-MS UPb dating on four grandite samples from the Grt1-exo, Grt1-edno, Grt2 and Grt3 yields Tera-Wasserburg lower intercept 206Pb/238U ages of 139.1 ± 1.0 Ma (2σ, MSWD = 0.79), 134 ± 11 Ma (2σ, MSWD = 2.5), 143.4 ± 8.3 Ma (2σ, MSWD = 2.3) and 140.3 ± 1.4 Ma (2σ, MSWD = 0.95), respectively. More importantly, two concordia 206Pb/238U ages of 139.2 ± 0.6 Ma (2σ, MSWD = 1.4) and 139.8 ± 1.5 Ma (2σ, MSWD = 0.13) were firstly obtained from the sample of Grt1-exo with highest U concentrations ([U]avg > 80 ppm) contents. The precision UPb ages of 139–140 Ma from Grt1-exo and Grt3 can be considered as the timing of Cu-Fe-Au skarn mineralization, and consistent with the majority of published zircon UPb ages of the quartz dioritic stock and 40Ar39Ar plateau ages of phlogopite at Tonglvshan (142–140 Ma). The precision grandite UPb ages also indicate that the entire metasomatic hydrothermal mineralization activity in the Tonglvshan Cu-Fe-Au skarn deposit occurred within a relatively short time span of <1 (or 2.5 considering errors) Myr. In addition, we found that the grandite garnet is more easily to be enriched in U and can obtain the high-precision concordia UPb ages with higher andradite Mol%, euhedral and larger crystals, and relevant oxidized magmatic rocks or skarns.  相似文献   

18.
The Balleny and Scott volcanic provinces are two isolated and remote volcanic occurrences located along the rifted margin of Western Antarctica in the Ross Sea. They include oceanic plateaus, seamounts, and volcanic islands. Although volcanic activity has been documented through remote sensing, there is no geochronological data based on radio-isotope methods constraining the duration of the volcanic activity in this region. As a consequence, hypotheses, based on the interpretation of chemical characteristics of the lavas, that suggested the volcanism to be either the result a deep mantle plume or a large-scale shallow melting anomaly have not yet been tested decisively.In order to tackle this issue, we have now dated lavas dredged from seamounts from both Balleny and Scott provinces using the 40Ar/39Ar technique. Our new age dates suggest that the Balleny and Scott volcanic provinces were active since at least 2.8 Ma and 2.4 Ma respectively. This suggests that these volcanic provinces were active simultaneously to the magmatism of the McMurdo volcanic group in the Western Antarctica Rift System that comprises Mount Erebus and Mount Melbourne stratovolcanoes. Our new dates suggest that there is no obvious age trend across the Balleny and Scott provinces. Combined with plate reconstructions since the end of Mesozoic, these data suggest that the Scott province does not coincide with any potential hot-spot track, thus negating a deep mantle plume origin for this volcanism. The case of the Balleny province is more ambiguous. The hypothesis of this province representing the end of the Tasman seamounts chain formed by a hot-spot track with decreasing-age trend is not confirmed by the new geochronological data, since available dates for the region are rather scarce and unreliable for the Tasman seamounts.Therefore, we suggest that the Balleny and Scott provinces originated from shallow mantle melting processes, a hypothesis that seems to be consistent with our re-interpretation of the SrNdPb isotope data of the lavas from the Balleny and Scott provinces. We argue that these provinces were derived from a heterogeneous subcontinental lithospheric mantle metasomatized during ancient subductions and which is now scattered in the shallow mantle of the southwest Pacific realm. This scattered mantle source component has been melting since the beginning of Cenozoic, and was then progressively depleted in the most fusible components. This new working model can explain the presence of several magmatic provinces in the southwest Pacific-Antarctica realm which show similar chemical signatures.  相似文献   

19.
The Zapug–Duobuza magmatic arc (ZDMA), located along the southern edge of the south Qiangtang terrane in western Tibet, extends east–west for ~ 400 km. Small scattered granite and porphyry intrusions crop out in the ZDMA, but a large amount of granite may be buried by Late Cretaceous to Paleogene thrusting. Two stages of magmatism have been identified, at 170–150 Ma and 130–110 Ma. The widely distributed Middle–Late Jurassic granite intrusions in the ZDMA exhibit SrNd isotopic characteristics similar to those of ore-bearing porphyries in the Duolong giant CuAu deposit, and their εHf(t) values mostly overlap those of other porphyry CuMo deposits in the ZDMA and the Gangdese zone. The SrNdHf isotopic geochemistry suggests variable contributions of mantle and Qiangtang crustal sources, and indicates the presence of two new ore districts with potentials for CuAu, Fe, and PbZn ores, located in the Jiacuo–Liqunshan and Larelaxin–Caima areas. Except for the Duolong ore-forming porphyries, which show significant contributions of mantle components intruded into an accretionary mélange setting, the Early Cretaceous granites in other areas of the belt are of mostly crustal origin, from sources in Qiangtang felsic basement and Permo-Carboniferous strata, indicating the weak ore-forming potential of skarn-type Fe and PbZn deposits. The ephemeral but deep Bangong Co–Nujiang ocean in the Early Jurassic evolved into a shallow compressional marine basin in the Middle–Late Jurassic, possibly transitioning to northward flat subduction of oceanic crust at this time. The subducted slab broke off in the Early Cretaceous, initiating a peak in arc magmatism and metallogenesis at 125–110 Ma.  相似文献   

20.
Final fragmentation of Rodinia occurred during the Ediacaran Period as Amazonia, Baltica and Laurentia drifted apart to form the Iapetus Ocean. Accompanying rift-related mafic dyke swarms of the Central Iapetus Magmatic Province (CIMP) were emplaced between 0.62 and 0.55 Ga, which are preserved in Laurentia and Baltica, whereas no coeval mafic rocks are known from Amazonia. First evidence for the CIMP extending into Oaxaquia (Rodinia-type basement of Mexico) was reported as tholeiitic dykes that intruded the Novillo gneiss, NE Mexico, at 619 ± 9 Ma. In Chiapas, SE Mexico, amphibolite dykes that are chemically similar to the Novillo dykes intruded anorthosite and gneiss. In this paper, a new dating approach to obtain mafic dyke intrusion ages is presented by targeting contact metamorphic zircon with the UPb method, employing Secondary Ion Mass Spectrometry. Zircon that crystallized in anorthosite at intrusive contacts to mafic dykes and at temperatures exceeding 700 °C (Ti-in-zircon thermometry) yields ages between 615 ± 7 Ma and 608 ± 12 Ma, reflecting the time of dyke intrusion. Zircon chemical and isotopic (Hf, O) characteristics suggest a diachronous sequence of metamorphic processes involving Zr release from FeTi oxides, breakdown and recrystallization of other phases, and fluid-mitigated reactions during Ordovician metamorphism. Zircon δ18O values of granulites from Oaxaquia range from +6.2‰ to +9.8‰, whereas Tonian (~0.92 Ga) metamorphic zircon from SE Chiapas yielded low δ18O values from +2.0‰ to +2.8‰ that are explained by the reactivation of major tectonic boundaries during Tonian gravitational collapse. The observations increase the known extent of the CIMP in Mexico, suggesting that a Neoproterozoic superplume was still active during the Early Ediacaran producing a Large Igneous Province that extended over Amazonia, Baltica and Laurentia. The results further suggest that Oaxaquia at the northern edge of Amazonia formed the conjugate margin of Baltica during rifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号