首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
Summary. From a study of 'abnormal quiet days' (AQDs) at equatorial latitudes it was found earlier (Sastri) that the occurrence of an abnormal Sq ( H ) phase confined to the equatorial electrojet belt is closely associated with the incidence of complete or partial counter-electrojet (CEJ) conditions (marked daytime depressions in the H field in the electrojet region) for about 5 hr around the normal time interval of the diurnal maximum of the H field. In this paper, we investigate the causative mechanism of the Sq ( H ) phase variability on 'normal quiet days' (NQDs), defined as days on which the diurnal maximum of the H field occurs in the time interval 0930-1230 LT, in the equatorial electrojet belt using published geomagnetic data of stations in the Indian equatorial region. It is found that much of the phase variability of Sq ( H ) on NQDs may be caused by the influence of southward (negative) perturbation fields in the H component, similar in nature to those associated with AQDs but of a much smaller amplitude, close to the usual time of the diurnal maximum of the H field. The perturbation fields are noticed to be essentially of the ionospheric dynamo region origin. Possible mechanisms that might give rise to the observed perturbation fields are discussed.  相似文献   

2.
Summary. The northward component of the induced magnetic field due to the equatorial electrojet at the Earth's surface is calculated using a more realistic local time variaton of the external field due to the electrojet than is provided for by models of the electrojet currently used in induction calculations. It is seen that appreciable induction effects can be expected about an hour before local noon for the kind of local time variation considered. Our results are in qualitative agreement with direct observations of Earth currents in the equatorial region in Nigeria. At local times when observable induction effects are present, the magnetic field due to the electrojet is necessarily three-dimensional; hence in order to obtain the internal part directly from the observed total field due to the electrojet at the Earth's surface, a three-dimensional formulation is required.  相似文献   

3.
Abstract Reconstructions of the relative positions of the Indian, African, and Antarctic plates and their uncertainties are given for the times of selected magnetic anomalies that could be identified on adjacent pairs of these plates. Among the most certain reconstructions are those for the Antarctic and African plates, which can be determined directly from recently published magnetic anomalies from both sides of the Southwest Indian Ridge. As Patriat and his colleagues reported, there was an important change in direction and a decrease in rate of separation between Africa and Antarctica between the times of anomalies 33 and 20. India moved rapidly away from both Africa and Antarctica in the Late Cretaceous and early Tertiary periods, but slowed markedly near the time of anomaly 20 (≅ 45 Myr). The positions of the Indian plate with respect to the others are poorly constrained between the times of anomaly 5 (≅ 10 Myr) and anomaly 23 (≅ 54 Myr), but using the reconstructions of the African and Antarctic plates, the uncertainties can be reduced. Despite the relatively large uncertainties, the positions of anomalies 5, 6, and 13 on the Antarctic and Indian plates apparently cannot be described by the same parameters that describe the history of separation of Australia and Antarctica. Therefore, Stein and Okal's contention that Australia and India lie on separate plates appears to be valid not only for the present, but for the last 35 Myr.  相似文献   

4.
As a baseline measurement for understanding the Himalayan–Tibetan orogen, a product of continent–continent collision between India and Eurasia, we analyse digital seismic data in order to constrain the seismic anisotropy of the Indian shield. Based on spatially sparse data that are currently available in the public domain, there is little shear-wave birefringence for SKS phases under the Indian shield, even though it is part of a fast-moving plate in the hotspot frame of reference. If most of the northern Indian mantle has little transverse anisotropy, the onset of significant anisotropy under Tibet marks the northern terminus of intact Indian lithosphere that is thrusting under the Himalayan–Tibetan orogen. Beyond this terminus, tectonic fabric such as that associated with the deforming lithospheric mantle of Eurasia must be present in the upper mantle. Along the profile from Yadong to Golmud, the only profile in Tibet where a number of shear-wave birefringence data are available, the amount of birefringence shows two marked increases, near 30° and 33°N, between which a local high in Bouguer gravity anomaly is observed. Such a correlation between patterns of shear-wave birefringence and gravity anomalies is explained by the juxtaposition of Indian lithosphere against the overlying Eurasian lithosphere: while the Eurasian lithospheric mantle appears only to the north of 30°N, the Indian lithospheric mantle extends northwards to near 33°N.  相似文献   

5.
Summary. Geomagnetic substorms recorded by an array of magnetometers over peninsular India have been analysed to investigate the subsurface electric configuration of the area. the study considered only night-time events when the external inducing field is uniform over the Indian peninsula and the conventional interpretational techniques of geomagnetic deep sounding can be readily applied. Contour maps of Fourier transform amplitudes and phases along with real and quadrature Parkinson arrows are presented. Their features reveal a complex anomaly pattern. the observed anomalies can be classified into: (i) southern peninsular anomalies, (ii) Palk Strait anomalies, (iii) Pondicherry rift anomalies, and (iv) anomalies in the central region. A large-scale induction process seems to be disturbed by localized perturbations. the prominent anomaly observed over the southern tip seems to have a direct relevance to the tectonic setting of the Indian ocean and adjoining areas.  相似文献   

6.
Summary. The contributions from the oceanic and ionospheric dynamos, Lo and LI respectively, to the geomagnetic lunar daily variation, L , at Alibag, a coastal station in the Indian equatorial region, are calculated from the L harmonics derived from a 41–yr long series of observations. The analysis in the calendar months shows a steady and significant ocean dynamo contribution in the vertical component, Z, in all the months except April. Examination, by an analysis of the data year by year, of the association of Lo and LI with varying solar and magnetic activities reveals, surprisingly, a stable correlation between the magnetic activity index A P and the oceanic part in the horizontal and vertical components but not in declination, which probably indicates the influence of induced currents, along the latitudes, on L o.  相似文献   

7.
Summary. Using an index derived from the observations of horizontal intensity at two stations in the Indian equatorial region, the characteristics of the lunar semi-monthly tide in the equatorial electrojet strength are studied. It is shown that a contamination of the lunar signal by recurrent geomagnetic disturbance is largely eliminated and that the strength of the signal vanes systematically with solar time. Comparison of amplitude between conditions of low and high solar activity indicates a difference in local time progression, while the phase change is independent of the solar activity and season. Results of seasonal subdivision of data indicate that the largest amplitude is associated with the d-season. With increased solar activity there is an increase in the d- and e-seasons and a marginal decrease in the j-season. For all the seasons, the phase progression is fairly consistent with the theoretical considerations of Stening.  相似文献   

8.
Active tectonics in a basin plays an important role in controlling a fluvial system through the change in channel slope. The Baghmati, an anabranching, foothills-fed river system, draining the plains of north Bihar in eastern India has responded to ongoing tectonic deformation in the basin. The relatively flat alluvial plains are traversed by several active subsurface faults, which divide the area in four tectonic blocks. Each tectonic block is characterized by association of fluvial anomalies viz. compressed meanders, knick point in longitudinal profiles, channel incision, anomalous sinuosity variations, sudden change in river flow direction, river flow against the local gradient and distribution of overbank flooding, lakes, and waterlogged area. Such fluvial anomalies have been identified on the repetitive satellite images and maps and interpreted through DEM and field observations to understand the nature of vertical movements in the area. The sub-surface faults in the Baghmati plains cut across the river channel and also run parallel which have allowed us to observe the effects of longitudinal and lateral tilting manifested in avulsions and morphological changes.  相似文献   

9.
Summary. New gravity observations from a systematic survey of the Eastern Mediterranean Sea and from a reconnaissance land survey in Central and Western Turkey have been compiled with existing data. Lack of sufficient geological and geophysical information precludes an analysis of the local anomalies or crustal structure; however, implications of the topography and gravity field at long wavelengths have been examined. Negative free-air anomalies characterize almost the entire Eastern Mediterranean basin and positive anomalies predominate in Turkey and the Aegean Sea. The change in sign coincides with the northern boundary of the African plate, and the wavelength and amplitude of the gravity variation are of the order of 1000 km and 100 mgal respectively. The lithosphere is probably unable to support such anomalies because the implied shear stresses are too large. The source of the anomalies is concluded to be in the asthenosphere where the low finite strength of material suggests that some sort of flow must exist to maintain the stresses. A good correlation is observed between the gravity and topography at wavelengths greater than 300 km; and the relationship is the same as that observed in the North Atlantic and the Central Pacific, as well as that computed for simple models of mantle convection. The gravity and topography of the Eastern Mediterranean can be explained in terms of flow in the upper mantle. This is the first region of subsidence for which this interpretation has been made.  相似文献   

10.
Summary. Lateral heterogeneity exists in the Earth's mantle, and may result in seismic velocity anomalies up to several per cent. If convection cells and plumes extend down to the core, then these features may be associated with local inhomogeneities observed in the lower mantle.
Published data for direct and core-reflected P -wave residuals are used to delineate velocity anomalies in the middle—lower mantle under the North Atlantic. Differential ( PcP — P ) residuals indicate travel-time anomalies near the core—mantle transition, and may be due to core topography or lateral variations in velocity. It is assumed that the anomalies occur near the midpoints of the ray paths. The main source of error in the data set may arise from phases which have been identified incorrectly. Hence trend-surfaces are fitted to the residual data to show only the large-scale trends in anomaly values, with wavelengths of the order of 1000 km.
The Azores and Colorado hot spots occur in a region covered by the data. A possible interpretation of the trend maps is that an anomalous zone extends from a relatively fast region at the core boundary at 35° N, 50° W up to these hot spots, at about 30 degrees from the vertical. This may agree with the suggestion of Anderson that plumes are chemical rather than thermal in origin. If inclined plumes do exist, the deviation from the ideal vertical plume or convection cell boundary may imply that lateral shear or other distortion effects exist in the mantle.  相似文献   

11.
This work is a study of the upper-mantle seismic structure beneath the central part of the Eurasian continent, including the northern Mongolia, Altai and Sayan orogenic areas and the Baikal rift zone. Seismic velocity models are reconstructed using the inverse teleseismic scheme. This scheme uses information from earthquakes located within the study area recorded by the Worldwide Network. The seismic anomaly structure is obtained for different volumes in the study area that partially overlap one another. Special attention has been paid to the reliability of the results: several noise and resolution comparisons are made.
The main results are as follows. (1) A cell structure of anomalies is observed beneath the Altai–Sayan region: positive, cold anomalies correspond to regions of recent orogenesis, negative anomalies are located beneath the depression of the Great Lakes in Mongolia and Hubsugul Lake. (2) A large negative anomaly is observed beneath the Hangai dome in Mongolia. (3) Strong velocity variations are obtained in a zone around Baikal Lake. A large negative anomaly is traced beneath the southern margin of the Siberian craton down to a depth of 700 km. Contrasting positive anomalies (4–5 per cent) are observed at a depth of 100–300 km beneath the Baikal rift. Our geodynamical interpretation of the velocity structure obtained beneath central Asia involves the existence of two processes in the mantle: thermal convection with regular cells, and a narrow plume beneath the southern border of the Siberian plate.  相似文献   

12.
1960-2016年秦岭—淮河地区热浪时空变化特征及其影响因素   总被引:4,自引:3,他引:1  
基于134个气象站点1960-2016年逐日最高温和相对湿度数据,辅以趋势分析、空间分析和相关分析等方法,对秦岭—淮河地区热浪时空变化特征进行分析,探讨了赤道东太平洋海温异常与热浪变化的相关关系。结果表明:①近57年秦岭—淮河地区热浪呈现“非线性、非平稳和阶段性”的变化过程,年代变化可分为3个阶段:1960-1972年热浪呈现东西分异,分界线大致位于112°E,以东地区热浪异常偏多,以西地区则“高低交替”波动;1973-1993年热浪维持“低位波动”,并在20世纪80年代中期呈现快速增加;1994-2016年,关中平原、秦巴山区、巫山山区和四川盆地热浪维持“高位波动”,黄河下游、淮河平原和长江下游热浪则经历从“相对偏多”向“相对偏少”的转变;②在影响因素方面,最高温波动变化是秦岭—淮河地区热浪频次年代变化的主导因素,相对湿度变化的影响相对较弱;③近57年来关中平原热浪年代变化与赤道太平洋西部海温异常关系更为密切,长江流域与东部海温异常关系更为密切;对于黄河下游和秦巴山区的热浪变化与不同分区赤道太平洋海温异常关系均较弱。  相似文献   

13.
Summary. A new Bouguer anomaly map of India and its generalized interpretation is presented in this paper. Bouguer anomalies in India show good correlation with the geology and tectonics. Isostatic anomalies in India are primarily geologic anomalies caused by intracrustal inhomogeneities. For example, the negative isostatic anomalies in southern India arise from large thicknesses of granitic bodies in the upper crust and the positive anomaly over the Himalaya may be attributed to a possible thickening of the basalt layer in the lower crust. The gravity data suggest that an overall isostatic equilibrium generally prevails in India and the Himalayan region. Crustal thickness estimates from DSS data in India are comparable to the values obtained from gravity data based on the Ahy's concept of isostatic compensation.  相似文献   

14.
Geomagnetic variations, observed at 11 sites in south-western Nigeria, have been analysed to derive interstation transfer functions with the site at Ile-Ife as reference station. The study involves frequencies from 1 to 6 c.p.h. The reference station Ile-Ife is 160 km northward of the continental slope off the Nigerian coastline and 400 km southward of the dip equator. The analysis has been carried out separately with selected data sections of a few hours length during daytime and during the night. Thus expressed linear relations between field components are in the case of day events of dual implication: (1) for the source field structure of the equatorial electrojet, (2) for internal conductivity conditions, including the coast effect from the Bight of Benin. Conductivity anomalies are the sole cause for an observed spatial variability of night events. A 2-D thin-sheet conductivity model has been derived taking both the source and the coast effect into consideration. This model provides a reasonably good fit between observed and computed transfer functions during day and night.  相似文献   

15.
A series of three‐dimensional models has been constructed for the structure of the crust and upper mantle over a large region spanning the NE Atlantic passive margin. These incorporate isostatic and flexural principles, together with gravity modelling and integration with seismic interpretations. An initial isostatic model was based on known bathymetric/topographic variations, an estimate of the thickness and density of the sedimentary cover, and upper mantle densities based on thermal modelling. The thickness of the crystalline crust in this model was adjusted to equalise the load at a compensation depth lying below the zone of lateral mantle density variations. Flexural backstripping was used to derive alternative models which tested the effect of varying the strength of the lithosphere during sediment loading. The models were analysed by comparing calculated and observed gravity fields and by calibrating the predicted geometries against independent (primarily seismic) evidence. Further models were generated in which the thickness of the sedimentary layer and the crystalline crust were modified in order to improve the fit to observed gravity anomalies. The potential effects of igneous underplating and variable upper mantle depletion were explored by a series of sensitivity trials. The results provide a new regional lithospheric framework for the margin and a means of setting more detailed, local investigations in their regional context. The flexural modelling suggests lateral variations in the strength of the lithosphere, with much of the margin being relatively weak but areas such as the Porcupine Basin and parts of the Rockall Basin having greater strength. Observed differences between the model Moho and seismic Moho along the continental margin can be interpreted in terms of underplating. A Moho discrepancy to the northwest of Scotland is ascribed to uplift caused by a region of upper mantle with anomalously low density, which may be associated with depletion or with a temperature anomaly.  相似文献   

16.
The most important climatological feature of the South Asian region is the occurrence of monsoons.With increasing concerns about climate change,the need to understand the nature and variability of such climatic conditions and to evaluate possible future changes becomes increasingly important.This paper deals with long-term above and below normal monsoon precipitation causing prolong meteorological droughts and floods in India.Five regions across India comprising variable climates were selected for the study.Apart from long-term trends for individual regions,long-term trends were also calculated for the Indian region as a whole.The results show that intra-region variability for monsoon precipitation is large and there are increasing numbers of meteorological summer droughts.Meteorological monsoon floods were found to have negative long-term trends everywhere except in the peninsular Indian region.The results overall suggest generic conclusions concerning the region-wide long-term trend of severity of monsoon droughts and floods in India and their spatial variability.  相似文献   

17.
A Bouguer gravity anomaly map of the NW Himalayas and parts of the Kohistan/Hindukush region has been prepared using all available gravity data. Analysis of the gravity field has been carried out along a profile extending from Gujranwala (located near the edge of the Indian shield) to the Haramosh massif in a NNE–SSW direction. The gravity profile is located close to the DSS profile shot under the USSR–India scientific collaborative programme. Velocity information available along different parts of the profile has been used to infer values of crustal and upper mantle density.
The observed gravity field (Bouguer) has been interpreted in terms of Moho depth and density contrast between the crust and the mantle. The Moho depth is interpreted as increasing from nearly 35 km near the edge of the Indian shield to 75 km (below sea-level) underneath the Haramosh massif. A similar model is applicable to a profile passing to the west of Nanga Parbat massif, from Gujranwala to Ghizar, through the Kohistan region. However, along this profile high-density lower-crustal rocks appear to have been emplaced in the upper part along the main mantle thrust. The nature of isostatic compensation prevailing underneath the Himalayas has been discussed, as has the theory of lithospheric flexure proposed by Karner & Watts and Lyon-Caen & Molnar. It is felt that although these ideas explain the broad features of the Moho configuration as observed in the NW Himalayas, there are significant departures. The role of tectonic forces in shaping the Moho and causing changes in the density of the crust cannot be denied.  相似文献   

18.
A 3-D P -velocity map of the crust and upper mantle beneath the southeastern part of India has been reconstructed through the inversion of teleseismic traveltimes. Salient geological features in the study region include the Archean Dharwar Craton and Eastern Ghat metamorphic belt (EGMB), and the Proterozoic Cuddapah and Godavari basins. The Krishna–Godavari basin, on the eastern coastal margin, evolved in response to the Indo–Antarctica breakup. A 24-station temporary network provided 1161 traveltimes, which were used to model 3-D P -velocity variation. The velocity model accounts of 80 per cent of the observed data variance. The velocity picture to a depth of 120 km shows two patterns: a high velocity beneath the interior domain (Dharwar craton and Cuddapah basin), and a lower velocity beneath the eastern margin region (EGMB and coastal basin). Across the array velocity variations of 7–10 per cent in the crust (0–40 km) and 3–5 per cent in the uppermost mantle (40–120 km) are observed. At deeper levels (120–210 km) the upper-mantle velocity differences are insignificant among different geological units. The presence of such a low velocity along the eastern margin suggests significantly thin lithosphere (<100 km) beneath it compared to a thick lithosphere (>200 km) beneath the eastern Dharwar craton. Such lithospheric thinning could be a consequence of Indo–Antarctica break-up.  相似文献   

19.
Summary The problems of reducing geomagnetic observations from ships at sea in areas influenced by the effect of the equatorial electrojet are discussed. In particular, observations within the Gulf of Aden have been corrected for daily variation and secular variation for the purposes of constructing a contoured magnetic anomaly chart.
An empirical formula is given with which the range of daily variation at different latitudes within the Gulf was estimated for the purpose of correcting the data for daily variation. The observed secular variation, which was used to correct the data, is—11 γ/yr. which differs from the secular variation of +19 γ/yr. in the Gulf of Aden given by the recently adopted International Geomagnetic Reference Field (Zmuda 1969).  相似文献   

20.
summary . The equilibrium pole-tide's signal is identified at a period around 14.22 month (427 day) in geomagnetic elements H and Z at a low-latitude coastal station, Alibag, in the Indian region. The signal however, could not be detected clearly in the element D . Consistent amplitudes and phases, over the hours, of this tide in H spectra of both'all days'and'IQ days'indicate that the origin of the tide in the geomagnetic field cannot be due to modulation of an external current system. It is suggested that the probable source of excitation may be the'ocean dynamo'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号