首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The occurrence of a large number of high and low amplitude anisotropic wave train events over the years 1981–1994 has been examined along with the different solar features. The results indicate that the time of maximum of diurnal variation significantly remains in the 18-h direction for majority of the high and low amplitude wave trains. The amplitude of diurnal anisotropy remains significantly high and phase shifts towards earlier hours as compared to the quite day annual average values for majority of the HAEs. The diurnal amplitude remains significantly low and phase shifts towards earlier hours as compared to the quiet day annual average values for majority of the LAEs. The occurrence of these enhanced/low amplitude events is found to be dominant during the positive polarity of the Bz component of the interplanetary magnetic field. The amplitude of the diurnal anisotropy of these events is found to increase on the days of magnetic cloud as compared to the days prior to the event and it found to decrease during the later period of the event as the cloud passes the Earth. The high-speed solar wind streams do not play any significant role in causing these types of events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic ray decreases.  相似文献   

2.
A detailed study has been conducted on the long-term changes in the diurnal variation of cosmic rays in terms of high and low amplitude wave trains event (HAEs/LAEs) during the period 1996–2008 (solar cycle 23), using the neutron monitor data from Kiel neutron monitoring station. As such, 17 HAE and 48 LAE cases have been detected and analyzed. These HAEs appear quite dominantly during the declining phase as well as near the maximum of the solar activity cycle 23. In contrast, the low amplitude events (LAEs) are inversely correlated with solar activity cycle. In fact, LAEs appear quite dominantly during the minimum phase of the solar activity. When we compare our results for diurnal phase with that observed on an annual average basis, we notice no significant diurnal phase shift for HAEs as well as for LAEs. Moreover, we find that the high-speed solar wind streams (HSSWS) do not play any significant role in causing these variations. These results are discussed on the basis of that observed in earlier cycles.  相似文献   

3.
Cosmic-ray intensity data recorded with the ground-based neutron monitor at Deep River have been investigated taking into account the associated interplanetary magnetic field and solar-wind plasma data during 1981 – 1994. A large number of days having abnormally high or low amplitudes for five or more successive days as compared to the annual average amplitude of diurnal anisotropy have been taken as high- or low-amplitude anisotropic wave-train events. The amplitude of the diurnal anisotropy of these events is found to increase on days with a magnetic cloud as compared to the days prior to the event, and it is found to decrease during the later period of the event as the cloud passes the Earth. The high-speed solar-wind streams do not play any significant role in causing these types of events. However, corotating solar-wind streams produce significant deviations in cosmic-ray intensity during high- and low-amplitude events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic-ray decreases. Hα solar flares have a good positive correlation with both the amplitude and direction of the anisotropy for high-amplitude events, while the principal magnetic storms have a good positive correlation with both amplitude and direction of the anisotropy for low-amplitude events. The source responsible for these unusual anisotropic wave trains in cosmic rays has been proposed.  相似文献   

4.
The unusually low amplitude anisotropic wave train events (LAEs) in cosmic ray intensity using the ground based Deep River neutron monitor data has been studied during the period 1991–94. It has been observed that the phase of the diurnal anisotropy for the majority of the LAE events remains in the co-rotational direction. However, for some of the LAE events the phase of the diurnal anisotropy shifts towards earlier hours as compared to the annual average values. On the other hand, the amplitude of the semi-diurnal anisotropy remains statistically the same, whereas phase shift-towards later hours; a similar trend has also been found in case of tri-diurnal anisotropy. The high-speed solar wind streams do not play a significant role in causing the LAE events. The occurrence of LAE is independent of the nature of the Bz component of IMF polarity. Published in Astrofizika, Vol. 50, No. 2, pp. 313–324 (May 2007).  相似文献   

5.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   

6.
The unusually low amplitude anisotropic wave train events (LAWEs) in cosmic ray intensity using the ground based Deep River neutron monitor data has been studied during the period 1991–1994. It has been observed that the amplitude of the diurnal anisotropy for LAWE events significantly remains quite low and statistically constant as compared to the quiet day annual average amplitude for majority of the events. The time of maximum of the diurnal anisotropy of LAWE significantly shifts towards earlier hours as compared to the co-rotational direction and remains in the direction of quiet day annual average anisotropy for majority of the events. On the other hand, the amplitude of the semi/tri-diurnal anisotropy remains statistically the same and high whereas, phase shift towards later hours as compared to the quiet day annual average values for majority of the LAWEs. The diurnal anisotropy vectors are found to shifts towards earlier hours for 50% of the events; whereas they are found to shifts towards later hours for rest of the events (50%) relative to the average vector for the entire period. It is also noted that the amplitude of these vectors are found to increase significantly with the shift of the diurnal anisotropy vectors towards later hours. The high-speed solar wind streams do not play a significant role in causing the LAWE events on short-term basis, however it may be responsible in causing these events on long-term basis (Mishra and Mishra 2007). Occurrence of LAWE is dominant, when the polarity of Bx and Bz remains positive and polarity of By remains negative, which is never been reported earlier. The amplitude of first harmonic shows good anti-correlation and direction of first and third harmonic shows nearly good anti-correlation with solar wind velocity, whereas the direction of second harmonic shows nearly good anti-correlation with interplanetary magnetic field strength.  相似文献   

7.
The purpose of this work is to investigate the first three harmonics of low-amplitude anisotropic wave trains (LAEs) of cosmic ray intensity and their association with solar and heliospheric parameters. The significant behaviour of these events is that the amplitude remains low for the first harmonic and high for the second/third harmonics, whereas direction of the anisotropy shift is towards earlier hours for the first harmonic and towards later hours for the second/third harmonic compared to annual average anisotropy. The first two harmonics are found to correlate well with the solar activity cycle during these LAEs. The amplitude and the direction of the first two harmonics do not show any significant association with the polarity change of the Bx/By component of the interplanetary magnetic field during LAEs. However, the third harmonic (amplitude and phase) shows some positive correlation with the Bx and negative correlation with the By component. The occurrence of LAEs is dominant for the positive polarity of Bx and the negative polarity of By. The occurrence of LAEs is dominant during the period of average solar wind velocity but their occurrence during high-speed solar wind streams cannot be overlooked. The frequency of occurrence of these LAEs is more during co-rotating streams.The amplitude of first and second harmonic shows deviations for different values of geomagnetic activity index Ap. However, the amplitude of second harmonic and direction of all the three harmonics do not show any significant association with the Ap-index. The Ap-index consistently remains in the range 14?Kp?31 during these events.The amplitude of first and third harmonic and the direction of first harmonic show deviations for different values of proton density. However, the amplitude of the second harmonic and the direction of the second and third harmonics do not show any significant association with proton density. The occurrence of LAEs is dominant when proton density remains ?20. The cosmic ray intensity during LAEs has good anti-correlation with interplanetary magnetic field strength (B) and its Bx component, whereas it shows a good correlation with its By component. However, it shows significant anti-correlation with sunspot number, the product (R×V) and (R×B).  相似文献   

8.
In the present work the data of three different neutron monitoring stations, Deep River, Tokyo and Inuvik located at different geomagnetic cutoff rigidities and altitudes has been harmonically analysed for the period 1980–1993, 1980–1990 and 1981–1993 respectively to investigate for a comparative study of diurnal, semi-diurnal and tri-diurnal anisotropies in cosmic ray (CR) intensity in connection with the change in IMF Bz component and solar wind velocity on 60 quietest days. It is observed that the amplitude of first harmonic is highly anti-correlated to the solar wind velocity during the period of high-speed solar wind stream (HSSWS) epoch on quiet days for three neutron monitor stations at different geomagnetic rigidity thresholds. During quiet days the amplitude of all the three harmonics significantly deviates on the onset of HSSWS epoch, whereas the direction of the anisotropy of all the three harmonics remains time invariant at three different cut off rigidity stations. The amplitude as well as the direction of anisotropy of all the three harmonics does not have time variation characteristics associated with Bz component of IMF on geo-magnetically most quiet days.  相似文献   

9.
The various observed harmonics of the cosmic ray variation may be understood on a unified basis if the free space cosmic ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of high amplitude wave trains of cosmic ray intensity over the period 1991–1994 for Deep River Neutron Monitoring Station. The main characteristic of these events is that the high amplitude wave trains shows a maximum intensity of diurnal component in a direction earlier than 1800 Hr/co-rotational direction. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams such as polar coronal holes. The direction of semi-diurnal anisotropy shows negative correlation with Bz. The occurrence of high amplitude events is dominant for the positive polarity of Bz component of IMF. The diurnal amplitude of these events shows a negative and the time of maximum shows a weak correlation with disturbance storm time index Dst. The direction of tri-diurnal anisotropy of these events is found to significantly correlate with geomagnetic activity index Ap.  相似文献   

10.
《Planetary and Space Science》2007,55(14):2077-2086
Several workers have attempted to find out the possible origin of the “high amplitude wave trains” of enhanced diurnal variation of cosmic rays and to develop a suitable realistic theoretical model that can explain the different harmonics in individual days. The various observed harmonics of the cosmic-ray variation may be understood on a unified basis if the free-space cosmic-ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of high-amplitude wave trains of cosmic-ray intensity over the period 1981–1994 for Deep River neutron monitoring station. The main characteristic of these events is that the high-amplitude wave trains show a maximum intensity of diurnal component in a direction earlier than 18:00 h/co-rotational direction. It is noteworthy that the amplitude significantly enhanced and the phase remains in the co-rotational direction during the years close to solar-activity maximum for first harmonic. Significant deviations have been observed in the semi-diurnal amplitude after the onset of solar-activity maximum. This leads us to conclude that the amplitude as well as direction of the first harmonic and the amplitude of second harmonic are correlated with solar-activity cycle during these HAEs. The amplitude and phase of all the three harmonics (diurnal/semi-diurnal/tri-diurnal) are not found to depend on the polarity of Bz component of interplanetary magnetic field for long-term variation. The occurrence of high-amplitude events is dominant for the positive polarity of Bz component of IMF. The occurrence of HAEs is dominant during the period of average solar-wind velocity, but their occurrence during HSSWSs cannot be denied. The possibility of occurrence of these events is more during the periods of co-rotating streams. The occurrence of HAE is dominant when Dst-index remains negative and this point is not reported earlier in the litterature. All the high amplitude events occurred, when geomagnetic activity index, Ap, remains ⩽20.  相似文献   

11.
The pressure-corrected hourly counting rate data of four neutron monitor stations have been employed to study the variation of cosmic ray diurnal anisotropy for a period of about 50 years (1955–2003). These neutron monitors, at Oulu ( R c = 0.78 GV), Deep River ( R c = 1.07 GV), Climax ( R c = 2.99 GV), and Huancayo ( R c = 12.91 GV) are well distributed on the earth over different latitudes and their data have been analyzed. The amplitude of the diurnal anisotropy varies with a period of one solar cycle (∼11 years), while the phase varies with a period of two solar cycles (∼22 years). In addition to its variation on year-to-year basis, the average diurnal amplitude and phase has also been calculated by grouping the days for each solar cycle, viz. 19, 20, 21, 22, and 23. As a result of these groupings over solar cycles, no significant change in the diurnal vectors (amplitude as well as phase) from one cycle to other has been observed. Data were analyzed by arranging them into groups on the basis of the polarity of the solar polar magnetic field and consequently on the basis of polarity states of the heliosphere ( A > 0 and A < 0). Difference in time of maximum of diurnal anisotropy (shift to earlier hours) is observed during A < 0 (1970s, 1990s) polarity states as compared to anisotropy observed during A > 0 (1960s, 1980s). This shift in phase of diurnal anisotropy appears to be related to change in preferential entry of cosmic ray particles (via the helioequatorial plane or via solar poles) into the heliosphere due to switch of the heliosphere from one physical/magnetic state to another following the solar polar field reversal.  相似文献   

12.
13.
We use 130 years data for studying correlative effects due to solar cycle and activity phenomena on the occurrence of rainfall over India. For the period of different solar cycles, we compute the correlation coefficients and significance of correlation coefficients for the seasonal months of Jan–Feb (JF), Mar–May (MAM), June–Sept (JJAS) and Oct–Dec (OND) and,annual mean data. We find that: (i) with a moderate-to-high significance, Indian rainfall is correlated with the sunspot activity and, (ii) there is an overall trend that during the period of low sunspot activity, occurrence of rainfall is high compared to the period of high sunspot activity. We speculate in this study a possible physical connection between the occurrence of the rainfall and the sunspot activities and, the flux of galactic cosmic rays. Some of the negative correlations between the occurrences of the sunspot and rainfall activities obtained for different solar cycle periods are interpreted as effects of aerosols on the rain forming clouds due to either intermittent volcanic eruptions or due to intrusion of interstellar dust particles in the Earth’s atmosphere.  相似文献   

14.
Using the ground based neutron monitor data of Deep River, the high-amplitude anisotropic wave train events (HAE) in cosmic ray intensity have been investigated during the period 1991-1994. It has been observed that the phase of diurnal anisotropy for majority of HAE shifts towards later hours; whereas it remains in the corotational/18-h direction for some of the HAE cases. Further, for majority of HAE cases the amplitude of diurnal and semi-diurnal anisotropy significantly deviates from the annual average values. The phase of semi-diurnal and tri-diurnal anisotropy for all HAE cases has shifted to later hours. Furthermore, for tri-diurnal anisotropy the amplitude remains statistically the same. The occurrence of HAE is unaffected by the nature of the Bz component of IMF polarity.  相似文献   

15.
The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis.From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.  相似文献   

16.
The pressure-corrected hourly counting rate data of ground-based super neutron monitor stations, situated in different latitudes, have been employed to study the characteristics of the long-term variation of cosmic-ray diurnal anisotropy for a long (44-year) period (1965?–?2008). Some of these super neutron monitors are situated in low latitudes with high cutoff rigidity. Annual averages of the diurnal amplitudes and phases have been obtained for each station. It is found that the amplitude of the diurnal anisotropy varies with a period of one solar activity cycle (11 years), whereas the diurnal phase varies with a period of 22 years (one solar magnetic cycle). The average diurnal amplitudes and phases have also been calculated by grouping the days on the basis of ascending and descending periods of each solar cycle (Cycles 20, 21, 22, and 23). Systematic and significant differences are observed in the characteristics of the diurnal variation between the descending periods of the odd and even solar cycles. The overall vector averages of the descending periods of the even solar cycles (20 and 22) show significantly smaller diurnal amplitudes compared to the vector averages of the descending periods of the odd solar cycles (21 and 23). In contrast, we find a large diurnal phase shift to earlier hours only during the descending periods of even solar cycles (20 and 22), as compared to almost no shift in the diurnal phase during the descending periods of odd solar cycles. Further, the overall vector average diurnal amplitudes of the ascending period of odd and even solar cycles remain invariant from one ascending period to the other, or even between the even and odd solar cycles. However, we do find a significant diurnal phase shift to earlier hours during the ascending periods of odd solar cycles (21 and 23) in comparison to the diurnal phase in the ascending periods of even solar cycles (20 and 22).  相似文献   

17.
The previously established connection between the occurence of AQDs (“abnormal quiet days” when the phase of the solar diurnal variation of horizontal magnetic field, Sq(H), at a mid-latitude northern hemisphere station is anomalous) at sunspot minimum and the magnitude of the following sunspot maximum is examined in the light of our recent improved understanding of the nature and cause of AQDs. A small contribution to the relationship is found to arise from variations from cycle to cycle in the additional northward field which is characteristic of AQDs and leads to a reduced Sq(H) amplitude at stations poleward of the Sq focus. However, the main factor which determines the connection is a variation from one sunspot minimum to another of the amplitude of the small southward bay-like field perturbations which constitute the AQD events, and evidence is presented which suggests that this parameter may be quantitatively related to the extent of southward swing of the Bz component of the interplanetary magnetic field which determines the energy transfer from the solar wind into the magnetospheric tail. It thus appears that the magnitude of southward swing in Bz might be another solar parameter which anticipates the size of a forthcoming sunspot cycle during its build-up over the declining phase of the previous cycle and at the minimum.  相似文献   

18.
To investigate the long-term modulation of galactic cosmic rays at the ground-based detector energies, the monthly values of the neutron monitor (Climax, Mt. Washington, Deep River, and Huancayo) and ionization chamber (Cheltenham/Fredericksburg, Huancayo, and Yakutsk) intensities have been correlated with the sunspot numbers (used as a proxy index for transient solar activity) for each phase of sunspot cycles 18 to 22. Systematic differences are found for results concerning odd and even sunspot cycles. During odd cycles (19 and 21) the onset time of cosmic-ray modulation is delayed when compared with the onset time of the sunspot cycle, while they are more similar during even (18, 20, and 22) cycles. Checking the green corona data, on a half-year basis, we found typical heliolatitudinal differences during ascending phases of consecutive sunspot cycles. This finding suggests a significant role of the latitudinal coronal behaviour in the heliospherical dynamics during a Hale cycle. Such effectiveness concerns not only the transient interplanetary perturbations but also the recurrent ones. In fact, when lag between cosmic-ray data and sunspot numbers is considered, the anticorrelation between both parameters is very high (correlation coefficient |r| > 0.9) for all the phases considered, except for the declining ones of cycles 20 and 21, when high-speed solar wind streams coming from coronal holes affect the cosmic-ray propagation, and theRz parameter is no longer the right proxy index for solar-induced effects in the interplanetary medium.  相似文献   

19.
The simultaneous enhancement or subsidence of both the high-speed solar wind streams and the galactic cosmic rays in the minimum or the maximum phase of the solar cycle are interpreted in a unified manner by the concept of geometrical evolution of the general magnetic field of the corona-heliomagnetosphere system. The coronal general magnetic field evolves from an open dipole-like configuration in the minimum phase to a closed configuration with many loop-like formations in the maximum phase of the solar cycle. This concept, developed in a theoretical solar-cycle model driven by the dynamo action of the global convection, is examined and found to be valid by studying the evolution of the coronal general magnetic field calculated from the observed surface general magnetic field of 1959–1974. It is also found that the energy density of the poloidal component of the general surface field, from which the coronal field originates, attained a maximum in the maximum phase and showed a evolution with virtually no phase delay with respect to that of the toroidal component of the field, to which the sunspot activity is related. The subsidence of the high-speed solar wind in the maximum phase is understood as a braking of the solar wind streams by the tightly closed and strong coronal field lines in the lower corona in the maximum phase. The field lines of the heliomagnetosphere, which originate from the coronal field lines drawn by the solar wind, are inferred to be also more tightly closed at the heliopause in the maximum phase than in the minimum phase. The decrease of the galactic cosmic rays in the maximum phase (known as the Forbush's negative correlation between the galactic cosmic ray intensity and the solar activity or the Forbush solar-cycle modulation of the galactic cosmic rays) is interpreted as a braking of the cosmic rays by the closed magnetic field lines at the heliopause. The observed phase lag (approximately one year) of the galactic cosmic ray modulation with respect to the evolution of the solar cycle, and the observed absence of the gradient of the total cosmic ray intensity between 1 AU and 8 AU, are discussed to support this view of the cosmic ray modulation at the remote heliopause, and reject other hypotheses to explain the phenomenon in terms of the magnetic irregularities of various kinds carried by the solar wind: The short-term Forbush decrease at a time of a flare shows that the magnetic irregularities can react on the cosmic rays relatively near the Sun if they even played a dominant role in the long-term modulation. The concept of the general magnetic field of the corona and the surface is also used to understand the basic nature of the surface field itself, by comparing the geometry of the calculated coronal field lines with the eclipse photographs of the corona, and by discussing, in the context of the coronal general magnetic field associated with the solar cycle, the process of the emergence of the coronal field lines from the interior and the formation of the transequatorial arches and loops connecting the two hemispheres in the corona.  相似文献   

20.
North/south directional telescopes operating at the surface and vertical and inclined telescopes operating at a depth of 60 m.w.e. underground in London have been employed to study changes in the cosmic ray solar diurnal variation over the past few years. In order to extend the study to the low rigidity end of the spectrum, results obtained by the NM64 neutron monitors operating at Deep River and Goose Bay in Canada have also been examined. The surface telescope data require that the full corotation amplitude of 0.59 per cent should have been observed during almost the entire solar cycle with the possible exception of the year 1965 when cosmic ray intensity was a maximum. However, the effective amplitude observed by neutron monitors during most of the solar cycle was only about 0.52 per cent and this reduction has been ascribed to the lower value of the exponent of the energy spectrum which prevails amongst the latitude sensitive primaries. Nevertheless, the upper limiting rigidity was varying during the course of the solar cycle, its value being high when solar activity was high and low when solar activity decreased. During 1965, even though the upper limiting rigidity assumed its lowest value, the free space amplitude was also diminished by a little over 10 per cent. Even though the theory of rigid corotation invoking a purely azimuthal streaming of the cosmic ray gas successfully predicts the free space amplitude, it fails to explain the phase changes observed by both types of monitor and which are quite significant. The underground data require that the component due to atmospheric temperature effects is negligibly small and that throughout the rigidity range covered by the recorder response, there is present an apparent anisotropy due to the orbital motion of the Earth around the Sun. Also the underground data roughly confirm the changes in upper limiting rigidity which were observed by the surface instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号