首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of design flood hydrographs using probability density functions   总被引:1,自引:0,他引:1  
Probability density functions (PDFs) are used to fit the shape of hydrographs and have been popularly used for the development of synthetic unit hydrographs by many hydrologists. Nevertheless, modelling the shapes of continuous stream flow hydrographs, which are probabilistic in nature, is rare. In the present study, a novel approach was followed to model the shape of stream flow hydrographs using PDF and subsequently to develop design flood hydrographs for various return periods. Four continuous PDFs, namely, two parameter Beta, Weibull, Gamma and Lognormal, were employed to fit the shape of the hydrographs of 22 years at a site of Brahmani River in eastern India. The shapes of the observed and PDF fitted hydrographs were compared and root mean square errors, error of peak discharge (EQP) and error of time to peak (ETP) were computed. The best‐fitted shape and scale parameters of all PDFs were subjected to frequency analysis and the quartiles corresponding to 20‐, 50‐, 100‐ and 200‐year were estimated. The estimated parameters of each return period were used to develop the flood hydrographs for 20‐, 50‐, 100‐ and 200‐year return periods. The peak discharges of the developed design flood hydrographs were compared with the design discharges estimated from the frequency analysis of 22 years of annual peak discharges at that site. Lognormal‐produced peak discharge was very close to the estimated design discharge in case of 20‐year flood hydrograph. On the other hand, peak discharge obtained using the Weibull PDF had close agreement with the estimated design discharge obtained from frequency analysis in case of 50‐, 100‐ and 200‐year return periods. The ranking of the PDFs based on estimation of peak of design flood hydrograph for 50‐, 100‐ and 200‐year return periods was found to have the following order: Weibull > Beta > Lognormal > Gamma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
An imaging‐based automated large‐scale particle image velocimetry (LSPIV) system for flash flood monitoring is developed and deployed in a mountainous stream in the Longchi Catchment, Chengdu, China. This system is built from a low‐cost Raspberry Pi board‐level computer with a camera module, which can acquire continuous images/videos automatically at programmed intervals. The minimum quadratic difference algorithm tracks surface patterns as flow tracers to estimate the distribution of surface velocities. Meanwhile, a stereo imaging‐based ‘virtual pole’ method has been developed to reconstruct the three‐dimensional topography with a stereo digital camera, and a cross‐sectional bathymetry has been generated without manual surveying. The varying water stage and water surface gradient, which are critical parameters that affect image rectification and surface velocity measurements, can also be directly resolved by applying the two imaging modules together. Discharge can then be estimated with the velocity–area method through selected cross sections. A flash flood that occurred between 24 July 2014 and 25 July 2014 is selected for analysis. The water surface level reconstructed from image processing was validated with marked water levels, and a good agreement was found with a root mean square error of 3.7 cm. The discharge recorded during the flood recession process ranged from approximately 3.5 to 27 m3/s. The rating curve obtained can be well described by a power function, and the linear regression suggested a Manning's n roughness coefficient of 0.18 of one specific cross section. Some limitations of the presented large‐scale particle image velocimetry system are also put forward, and possible solutions are provided for future improvements. With these proposed upgrades, the system can provide valuable datasets of flash floods in steep mountainous streams, which are critically needed for improving our understanding and modelling of many hydrological processes associated with flood generation, propagation and erosion, as well as for real‐time forecasting. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Flash floods represent one of the deadliest and costliest natural disasters worldwide. The hydrological analysis of a flash flood event contributes in the understanding of the runoff creation process. This study presents the analysis of some flash flood events that took place in a complex geomorphological Mediterranean River basin. The objective of the present work is to develop the thresholds for a real‐time flash flood forecasting model in a complex geomorphological watershed, based on high‐frequency data from strategically located hydrological and meteorological telemetric stations. These stations provide hourly real‐time data which were used to determine hydrological and meteorological parameters. The main characteristics of various hydrographs specified in this study were the runoff coefficients, lag time, time to peak, and the maximum potential retention. The estimation of these hydrometeorological parameters provides the necessary information in order to successfully manage flash floods events. Especially, the time to peak is the most significant hydrological parameter that affects the response time of an oncoming flash flood event. A study of the above parameters is essential for the specification of thresholds which are related to the geomorphological characteristics of the river basin, the rainfall accumulation of an event, the rainfall intensity, the threshold runoff through karstic area, the season during which the rainfall takes place and the time intervals between the rainstorms that affect the soil moisture conditions. All these factors are combined into a real‐time‐threshold flash flood prediction model. Historical flash flood events at the downstream are also used for the validation of the model. An application of the proposed model is presented for the Koiliaris River basin in Crete, Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Most road‐stream crossings over ephemeral channels are vulnerable to extreme hydrologic events. Ford stream crossings (FSCs) are usually dangerous for the road traffic during periods of high flow, in particular under flash flood conditions. The present paper analyzes the flood hazards on the Mediterranean coast in the Region of Murcia (south‐east Spain), affecting this type of road‐stream crossing over dry channels, according to hydraulic variables and bedload transport rates estimated for discharges at bankfull and flood‐prone stages. Under such conditions, the safety of people and vehicles was obtained using numerical models, developed by previous researchers; in particular, water levels and flow velocities across ford reaches were compared with different trend curves between water depths and corresponding critical velocities for children and adults, and for various prototype vehicles. Specifically, two approaches to assess this type of hazards were proposed: a specific Hydraulic Hazard Index and an algorithm for estimating the flood hazard from criteria of bed stability and bedload transport capacity (Flood Hazard at Fords, FHF). In addition, different exposure levels were established, using a Flood Vulnerability Index, based on the FHF, the road category, and the annual average daily traffic. The FHF model gave the best results with regard to the magnitude of the damage observed in recent flash floods for flow stages similar to those simulated. According to the danger thresholds established for this index, half‐bankfull flows represent here a high risk: 27.3% of FSCs for mini‐cars and 18.2% for large cars. At bankfull, the FHF exhibits very high values for mini‐cars (77.3% of FSCs) and for large passenger vehicles (50% of FSCs), while at the floodprone stage, extreme FHF values are reached for all kinds of vehicles at most of the ford crossings.  相似文献   

5.
Discharge, especially during flood periods, is among the most important information necessary for flood control, water resources planning and management. Owing to the high flood velocities, flood discharge usually cannot be measured efficiently by conventional methods, which explains why records of flood discharge are scarce or do not exist for the watersheds in Taiwan. A fast method of flood discharge estimation is presented. The greatest advantage of the proposed method is its application to estimate flood discharge that cannot be measured by conventional methods. It has as its basis the regularity of open‐channel flows, i.e. that nature maintains a constant ratio of mean to maximum velocities at a given channel section by adjusting the velocity distribution and the channel geometry. The maximum velocity at a given section can be determined easily over a single vertical profile, which tends to remain invariant with time and discharge, and can be converted to the mean velocity of the entire cross‐section by multying by the constant ratio. Therefore the mean velocity is a common multiple of maximum velocity and the mean/maximum velocity ratio. The channel cross‐sectional area can be determined from the gauge height, the water depth at the y‐axis or the product of the channel width multiplied by the water depth at the y‐axis. Then the most commonly used method, i.e. the velocity–area method, which determines discharge as the product of the cross‐sectional area multiplied by mean velocity, is applied to estimate the flood discharge. Only a few velocity measurements on the y‐axis are necessary to estimate flood discharge. Moreover the location of the y‐axis will not vary with time and water stage. Once the relationship of mean and maximum velocities is established, the flood estimation can be determined efficiently. This method avoids exposure to hazardous environments and sharply reduces the measurement time and cost. The method can be applied in both high and low flows in rivers. Available laboratory flume and stream‐flow data are used to illustrate accuracy and reliability, and results show that this method can quickly and accurately estimate flood discharges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Relative to those at sub‐bankfull flow, hydraulic conditions at overbank flow, whether in the channel or on the floodplain, are poorly understood. Here, velocity conditions are analysed over an unusually wide range of flows in the arid zone river of Cooper Creek with its complex system of anastomosing channels and large fluctuations in floodplain width. At‐a‐station hydraulic geometry relationships reveal sharp discontinuities in velocity at the inbank–overbank transition, the nature of the discontinuity varying with the degree of flow confinement and the level of channel–floodplain interaction. However, despite inter‐sectional differences, velocities remain modest throughout the flow range in this low‐gradient river, and the large increases in at‐a‐station discharge are principally accommodated by changes in cross‐sectional area. Velocity distribution plots suggest that within‐channel conditions during overbank flow are characterized by a central band of high velocity which penetrates far toward the bed, helping to maintain already deep cross‐sections. Floodplain resistance along Cooper Creek is concentrated at channel bank tops where vegetation density is highest, and the subsequent flow retardation is transmitted across the surface of the channels over distances as large as 50–70 m. The rough floodplain surface affects flood wave transmission, producing significant decreases in wave speeds downstream. The character of the wave‐speed–discharge relationship also changes longitudinally, from log–linear in the upper reaches to nonlinear where the floodplain broadens appreciably. The nonlinear form is similar in several respects to relationships proposed for more humid rivers, with flood wave speed reaching an intermediate maximum at about four‐fifths bankfull discharge before decreasing to a minimum at approximately Q2·33. It does not regain the value at the intermediate maximum until the 10 year flood, by which time floodplain depths have become relatively large and broad floodways more active. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
For most of the year, a dry‐bed desert wash is void of water flow. Intensive rain events, however, could trigger significant flash floods that bring about highly complicated hydrodynamics and morphodynamics processes within a desert stream. We present a fully coupled three‐phase flow model of air, water, and sediment to simulate numerically the propagation of a flash flood in a field‐scale fluvial desert stream, the so‐called Tex Wash located in the Mojave Desert, California, United States. The turbulent flow of the flash flood is computed using the three‐dimensional unsteady Reynolds‐averaged Navier–Stokes equations closed with the shear stress transport k ? ω model. The free surface of the flash flood at the interface of air and water phases is computed with the level‐set method, which enables instantaneous tracking of the water surface as the flash flood propagates over the dry bed of the desert stream. The evolution of the desert fluvial stream's morphology, due to the action of the propagating flash flood on the mobile bed, is calculated using a Eulerian morphodynamics model based on the curvilinear immersed boundary method. The capabilities of the proposed numerical framework are demonstrated by applying it to simulate a flash flood event in a 0.65‐km ‐long reach of the Tex Wash, the intricate channel morphology of which is obtained using light imaging detection and ranging technology. The simulated region of the stream includes a number of bridge foundations. The simulation results of the model for the flash flood event revealed the formation of a highly complex flow field and scour patterns within the stream. Moreover, our simulation results showed that most scour processes take place during the steady phase of the flash flood, that is, after the flash flood fills the stream. The transient phase of the flash flood is rather short and contributes to a very limited amount of erosion within the desert stream.  相似文献   

8.
An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s?1 to 629 m3 s?1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

In the first part of this study, a flood wave transformation analysis for the largest historical floods in the Danube River reach Kienstock–Bratislava was carried out. For the simulation of the historical (1899 and 1954) flood propagation, the nonlinear river model NLN-Danube (calibrated on the recent river reach conditions) was used. It was shown that the simulated peak discharges were not changed significantly when compared to their historical counterparts. However, the simulated hydrographs exhibit a significant acceleration of the flood wave movement at discharges of between 5000 and 9000 m3 s-1. In the second part, the travel time-water level relationships between Kienstock and Bratislava were analysed on a dataset of the flood peak water levels for the period 1991–2002. An empirical regression routing scheme for the Danube short-term water level forecast at Bratislava station was derived. This is based on the measured water level at Kienstock gauging station.  相似文献   

10.
The objective of this case study was to calibrate and verify detailed transport model of sediment in a 4‐kilometre stretch of the middle Elbe floodplains in Germany. The hydraulic RMA‐2 model and the SED2d‐WES sediment transport model were used. These models were calibrated and validated by detailed measurement of the surface water elevations, the velocities at six profiles, and the suspended sediment concentration and deposition (by means of 10 sediment traps). The flow was modelled for three steady‐state discharges. The surface water elevations were calculated to an accuracy of less than 5 cm compared to measurements. The differences between the calculated and measured velocities were with one exception smaller than 0.2 m/s (measured range 0.1…?1.0 m/s). An average sediment input of 35 g/(m2 d) was calculated for the flood event studied. The highest calculated sedimentation rates of 700 g/(m2 d) (dry density 90 kg/m3) occurred in quiescent zones and abandoned channels. Twenty‐five percent of the deposited sediment settled in the quiescent zones (which only account for 13% of the area). The most sensitive parameters of the sediment transport model were the settling velocity and critical shear stress. The modelling techniques used allowed sediment deposition on the floodplains of the Elbe to be realistically depicted.  相似文献   

11.
Floods in small mountainous watersheds cover a wide spectrum of flow. They can range from clear water flows and hyperconcentrated flows to debris floods and debris flows, and calculation of the peak discharge is crucial for predicting and mitigating such hazards. To determine the optimal approach for discharge estimation, this study compared water flow monitoring hydrographs to investigate the performance of five hydrological models that incorporate different runoff yields and influx calculation methods. Two of the models performed well in simulating the peak discharge, peak time, and total flow volume of the water flood. The ratio (γ) of the monitored debris flood discharge (Qd) to the simulated water flow discharge (Qw) was investigated. Qualitatively, γ initially increased with Qw but then decreased when Qw exceeded a certain threshold, which corresponded to rainfall of 95 and 120 mm in a 6- and 24-h event with a normal distribution of precipitation, respectively. The decrease might be attributable to a threshold of sediment availability being reached, beyond which increased flow rate is not matched by increased sediment input in the large watershed. Uncertainty of hydrological calculation was evaluated by dividing the catchment into sub-basins and adopting different rainfall time steps as input. The efficiency of using a distributed simulation exhibited marginal improvement potential compared with a lumped simulation. Conversely, the rainfall time step input significantly affected the simulation results by delaying the peak time and decreasing the peak discharge. This research demonstrates the applicability of a discharge estimation method that combines a hydrological water flow simulation and an estimation of γ. The results were verified on the basis of monitored flow densities and videos obtained in two watersheds with areas of 2.34 and 32.4 km2.  相似文献   

12.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

An updating technique is a tool to update the forecasts of mathematical flood forecasting model based on data observed in real time, and is an important element in a flood forecasting model. An error prediction model based on a fuzzy rule-based method was proposed as the updating technique in this work to improve one- to four-hour-ahead flood forecasts by a model that is composed of the grey rainfall model, the grey rainfall—runoff model and the modified Muskingum flow routing model. The coefficient of efficiency with respect to a benchmark is applied to test the applicability of the proposed fuzzy rule-based method. The analysis reveals that the fuzzy rule-based method can improve flood forecasts one to four hours ahead. The proposed updating technique can mitigate the problem of the phase lag in forecast hydrographs, and especially in forecast hydrographs with longer lead times.  相似文献   

14.
There is still wide uncertainty about past flash‐flood processes in mountain regions owing to the lack of systematic databases on former events. This paper presents a methodology to reconstruct peak discharge of flash floods and illustrates a case in an ungauged catchment in the Spanish Central System. The use of dendrogeomorphic evidence (i.e. scars on trees) together with the combined use of a two‐dimensional (2D) numerical hydraulic model and a terrestrial laser scan (TLS) has allowed estimation of peak discharge of a recent flash flood. The size and height distribution of scars observed in the field have been used to define three hypothetical scenarios (Smin or minimum scenario; Smed or medium scenario; and Smax or maximum scenario), thus illustrating the uncertainty involved in peak‐discharge estimation of flash floods in ungauged torrents. All scars analysed with dendrogeomorphic techniques stem from a large flash flood which took place on 17 December 1997. On the basis of the scenarios, peak discharge is estimated to 79 ± 14 m3 s?1. The average deviation obtained between flood stage and expected scar height was ? 0·09 ± 0·53 m. From the data, it becomes obvious that the geomorphic position of trees is the main factor controlling deviation rate. In this sense, scars with minimum deviation were located on trees growing in exposed locations, especially on unruffled bedrock where the model predicts higher specific kinetic energy. The approach used in this study demonstrates the potential of tree‐ring analysis in palaeohydrology and for flood‐risk assessment in catchments with vulnerable goods and infrastructure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Movies taken by witnesses of extreme flood events are increasingly available on video sharing websites. They potentially provide highly valuable information on flow velocities and hydraulic processes that can help improve the post‐flood determination of discharges in streams and flooded areas. We investigated the troubles and potential of applying the now mature large‐scale particle image velocimetry (LSPIV) technique to such flood movies that are recorded under non‐ideal conditions. Processing was performed using user‐friendly, free software only, such as Fudaa‐LSPIV. Typical issues related to the image processing and to the hydrological analysis are illustrated using a selected example of a pulsed flash‐flood flow filmed in a mountainous torrent. Simple corrections for lens distortion (fisheye) and limited incoherent camera movement (shake) were successfully applied, and the related errors were reduced to a few percents. Testing the different image resolution levels offered by YouTube showed that the difference in time‐averaged longitudinal velocity was less than 5% compared with full resolution. A limited number of GRPs, typically 10, is required, but they must be adequately distributed around the area of interest. The indirect determination of the water level is the main source of uncertainty in the results, usually much more than errors because of the longitudinal slope and waviness of the free‐surface of the flow. The image‐based method yielded direct discharge estimates of the base flow between pulses, of the pulse waves, and of the time‐averaged flow over a movie sequence including a series of five pulses. A comparison with traditional indirect determination methods showed that the critical‐depth method may produce significantly biassed results for such a fast, unsteady flow, while the slope‐area method seems to be more robust but would overestimate the time‐averaged flow rate if applied to the high‐water marks of a pulsed flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Groundwater often accounts for a substantial fraction of flood hydrographs, but the processes responsible for this have been unclear. However, many aquifers have preferential flow and this explains how aquifers can be so responsive. In bedrock aquifers, weathering enhances the connectivity and apertures along the most efficient flow paths and hence enhances the permeability. This results in celerities and velocities of the preferential flow in these dual‐porosity aquifers that are two to three orders of magnitude higher than if the aquifers behaved as single‐porosity media. The celerities have been determined from artificial and natural flood pulses, from tidal lags, and from pumping tests. Preferential‐flow velocities have been calculated from tests using applied tracers. Celerities in bedrock aquifers are typically one to two orders of magnitude faster than velocities. The ubiquitous preferential flow in aquifers provides an additional explanation, besides groundwater ridging, for the rapid release of groundwater to streams during storm events.  相似文献   

17.
In recognition of the non‐linear relationship between storage and discharge existing in most river systems, non‐linear forms of the Muskingum model have been proposed, together with methods to calibrate the model parameters. However, most studies have focused only on routing a typical hypothetical flood hydrograph characterized by a single peak. In this study, we demonstrate that the storage–discharge relationship adopted for the non‐linear Muskingum model is not adequate for routing flood hydrographs in natural channels, which are often characterized by multiple peaks. As an alternative, an evolutionary algorithm‐based modelling approach, i.e. genetic programming (GP), is proposed, which is found to route complex flood hydrographs accurately. The proposed method is applied for constructing a routing model for a channel reach along the Walla Walla River, USA. The GP model performs extremely well with a root‐mean‐square error (RMSE) of 0·73 m3 s?1 as against an RMSE of 3·26 m3 s?1 for routing the multi‐peaked hydrograph. The advantage of GP lies in the fact that, unlike other models, it establishes the routing relationship in an easy and simple mathematical form. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Ditch cleaning in drained peatland forests increases sediment loads and degrades water quality in headwater streams and lakes. A better understanding of the processes controlling ditch erosion and sediment transport in such systems is a prerequisite for proper peatland management. In order to relate hydrological observations to key erosion processes in headwater peatlands drained for forestry, a two‐year study was conducted in a nested sub‐catchment system (treated with ditch cleaning) and at two reference sites. The treated catchment was instrumented for continuous discharge and turbidity monitoring, erosion pin measurements of changes in ditch bed and banks and time‐integrated sampling of suspended sediment (SS) composition. The results showed that ditch cleaning clearly increased transient suspended sediment concentrations (SSCs) and suspended sediment yields (SSYs), and resulted in temporary storage of loosely deposited organic sediment in the ditch network. After exhaustion of this sediment storage, subaerial processes and erosion from ditch banks became dominant in producing sediment for transport. Recorded SSCs were higher on the rising limbs of event hydrographs throughout the study period, indicating that SS transport was limited by availability of erosion‐prone sediment. A strong positive correlation (R2 = 0.84, p < 0.001) between rainfall intensity (above a threshold of 1 mm h?1) and average SSC obtained on the rising limb of hydrographs for the sub‐catchment showed that soil detachment from ditch banks by raindrop impact can directly increase SSC in runoff. At the main catchment outlet, variation in SSC was best explained (R2 = 0.67, p < 0.05) by the linear combination of initial discharge (?), peak discharge (+) and the lag time from initial to peak discharge (?). Based on these factors, ditch cleaning slightly increased peak discharges and decreased transit times in the study catchment. The implications of the results for water pollution management in peatland forests are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Young basalt terrains offer an exceptional opportunity to study landscape and hydrologic evolution through time, since the age of the landscape itself can be determined by dating lava flows. These constructional terrains are also highly permeable, allowing one to examine timescales and process of geomorphic evolution as they relate to the partitioning of hydrologic flowpaths between surface and sub‐surface flow. The western slopes of the Cascade Range in Oregon, USA are composed of a thick sequence of lava flows ranging from Holocene to Oligocene in age, and the landscape receives abundant precipitation of between 2000 and 3500 mm per year. On Holocene and late Pleistocene lava landscapes, groundwater systems transmit most of the recharge to large springs (≥0·85 m3 s?1) with very steady hydrographs. In watersheds >1 million years old, springs are absent, and well‐developed drainage networks fed by shallow subsurface stormflow produce flashy hydrographs. Drainage density slowly increases with time in this basalt landscape, requiring a million years to double in density. Progressive hillslope steepening and fluvial incision also occur on this timescale. Springs and groundwater‐fed streams transport little sediment and hence are largely ineffective in incising river valleys, so fluvial landscape dissection appears to occur only after springs are replaced by shallow subsurface stormflow as the dominant streamflow generation mechanism. It is proposed that landscape evolution in basalt terrains is constrained by the time required for permeability to be reduced sufficiently for surface flow to replace groundwater flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
On 29 August, 2003, an intense convective storm system affected the Fella River basin, in the eastern Italian Alps, producing rainfall peaks of approximately 390 mm in 12 h. The storm triggered an unusually large debris flow in the ungauged Rio Cucco basin (0·65 km2), with a volume of approximately 78 000 m3. The analysis of the time evolution of the rainstorm over the basin has been based on rainfall estimates from radar observations and data recorded by a raingauge network. Detailed geomorphological field surveys, carried out both before and after the flood of August 2003, and the application of a distributed hydrological model have enabled assessment of flood response, estimation of erosion volumes and sediment supply to the channel network. The accounts of two eyewitnesses have provided useful elements for reconstructing the time evolution and the flow processes involved in the event. Liquid peak discharge estimates cluster around 20 m3 s?1 km?2, placing this event on the flood envelope curve for the eastern Italian Alps. The hydrological analysis has shown that the major controls of the flood response were the exceptional cumulated rainfall amount, required to exceed the large initial losses, and the large rainfall intensities at hourly temporal scales, required to generate high flood response at the considered basin scale. Observations on the deposits accumulated on the alluvial fan indicate that, although the dominant flow process was a debris flow, sheetflood also contributed to fan aggradation and fluvial reworking had an important role in winnowing debris‐flow lobes and redistributing sediment on the fan surface. This points out to the large discharge values during the recession phase of the flood, implying an important role for subsurface flow on runoff generation of this extreme flash flood event. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号