首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

3.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   

4.
Nitrate concentrations in streamwater of agricultural catchments often exhibit interannual variations, which are supposed to result from land‐use changes, as well as seasonal variations mainly explained by the effect of hydrological and biogeochemical cycles. In catchments on impervious bedrock, seasonal variations of nitrate concentrations in streamwater are usually characterized by higher nitrate concentrations in winter than in summer. However, intermediate or inverse cycles with higher concentrations in summer are sometimes observed. An experimental study was carried out to assess the mechanisms that determine the seasonal cycles of streamwater nitrate concentrations in intensive agricultural catchments. Temporal and spatial patterns of groundwater concentrations were investigated in two adjacent catchments located in south‐western Brittany (France), characterized by different seasonal variations of streamwater nitrate concentrations. Wells were drilled across the hillslope at depths ranging from 1·5 to 20 m. Dynamics of the water table were monitored and the groundwater nitrate and chloride concentrations were measured weekly over 2 years. Results highlighted that groundwater was partitioned into downslope domains, where denitrification induced lower nitrate concentrations than into mid‐slope and upslope domains. For one catchment, high subsurface flow with high nitrate concentrations during high water periods and active denitrification during low water periods explained the higher streamwater nitrate concentrations in winter than in summer. For the other catchment, the high contribution of groundwater with high nitrate concentrations smoothed or inverted this trend. Increasing bromide/chloride ratio and nitrate concentrations with depth argued for an effect of past agricultural pressure on this catchment. The relative contribution of flows in time and correlatively the spatial origin of waters, function of the depth and the location on the hillslope, and their chemical characteristics control seasonal cycles of streamwater nitrate concentrations and can influence their interannual trends. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Spatial patterns of N dynamics in soil were evaluated within two small forested watersheds in Japan. These two watersheds were characterized by steep slopes (>30°) and high stream NO3 drainage rates (8·4 to 25·1 kg N ha−1 yr−1) that were greater than bulk precipitation N input rates (7·5 to 13·5 kg N ha−1 yr−1). Higher rates of nitrification potential at near-stream zones were reflected in greater NO3 contents for soil at the near-stream zones compared with ridge zones. Both stream discharge rates and NO3 concentrations in deep unsaturated soil at the near-stream zones were positively correlated to NO3 concentrations in stream water. These relationships, together with high soil NO3 contents at the near-stream zones, suggest that the near-stream zone was an important source of NO3 to stream water. Nitrate flux from these near-stream zones was also related to the drainage of cations (K+, Ca2+ and Mg2+). The steep slope of the watersheds resulted in small saturated areas that contributed to the high NO3 production (high nitrification rates) in the near-stream zone. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Theodore Chao Lim 《水文研究》2016,30(25):4799-4814
Many studies have empirically confirmed the relationship between urbanization and changes to the hydrologic cycle and degraded aquatic habitats. While much of the literature focuses on extent and configuration of impervious area as a causal determinant of degradation, in this article, I do not attribute causes of decreased watershed storage on impervious area a priori. Rather, adapting the concept of variable source area (VSA) and its relationship to incremental storage to the particular conditions of urbanized catchments, I develop a statistically robust linear regression‐based methodology to detect evidence of VSA‐dominant response. Using the physical and meteorological characteristics of the catchments as explanatory variables, I then use logistic regression to statistically analyze significant predictors of the VSA classification. I find that the strongest predictor of VSA‐type response is the percent of undeveloped area in the catchment. Characteristics of developed areas, including total impervious area, percent‐developed open space and the type of drainage infrastructure, do not add to the explanatory power of undeveloped land in predicting VSA‐type response. Within only developed areas, I find that total impervious area and percent‐developed open space both decrease the odds of a catchment exhibiting evidence of VSA‐type response and the effect of developed open space is more similar to that of total impervious area than undeveloped land in predicting VSA response. Different types of stormwater management infrastructure, including combined sewer systems and infiltration, retention and detention infrastructure are not found to have strong statistically significant effects on probability of VSA‐type response. VSA‐type response is also found to be stronger during the growing season than the dormant season. These findings are consistent across a national cross‐section of urbanized watersheds, a higher resolution dataset of Baltimore Metropolitan Area watersheds and a subsample of watersheds confirmed not to be served by (combined sewer systems). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Post‐fire sediment yields can be up to three orders of magnitude greater than sediment yields in unburned forests. Much of the research on post‐fire erosion rates has been at small scales (100 m2 or less), and post‐fire sediment delivery rates across spatial scales have not been quantified in detail. We developed relationships for post‐fire bedload sediment delivery rates for spatial scales up to 117 ha using sediment yield data from six published studies and two recently established study sites. Sediment yields and sediment delivery ratios (SDRs; sediment delivered at the catchment scale divided by the sediment delivered from a plot nested within the catchment) were related to site factors including rainfall characteristics, area, length, and ground cover. Unit‐area sediment yields significantly decreased with increasing area in five of the six sites. The annual SDRs ranged from 0.0089 to 1.15 and these were more closely related to the ratio of the plot lengths than the ratio of plot areas. The developed statistical relationships will help quantify post‐fire sediment delivery rates across spatial scales in the interior western United States and develop process‐based scaling relationships. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
The concentration and isotopic composition of nitrate were analyzed to improve an understanding of nitrate sources and transformation processes in a typical karstic agricultural field in the Houzhai catchment, Guizhou Province, Southwest China. The results revealed that no distinct spatial pattern of content and isotopic composition of nitrate exists in this karst catchment. Nitrate in surface stream (SFS) had slightly lighter isotopic composition and lower concentration compared with nitrate in subterranean stream (STS) during the dry season. Concentrations of SFS nitrate increased to concentrations similar to those of STS during the wet season. The isotopic values indicated that nitrate were mainly impacted by manure sources during the dry season and influenced by a mix of chemical fertilizer and manure during the wet season. The denitrification rates were roughly estimated based on the isotopic compositions of nitrate after considering volatilization and ignoring assimilation. The calculated result showed that approximately one fifth of nitrate load was removed by denitrification in the catchment. Annual nitrate flux from the outlets accounted for 14.2% of applied total fertilizers used in the catchment, approximately 85% of total transported flux from the catchment in the wet season. Furthermore, chemical weathering processes were enhanced by using nitrogen fertilizer because liberated protons and enhanced HCO3? flux were produced through by nitrification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
M. Z. Iqbal 《水文研究》2008,22(23):4609-4619
Oxygen and deuterium isotopes in precipitation were analysed to define local isotopic trends in Iowa, US. The area is far inland from an oceanic source and the observed averages of δ18O and δ D are ? 6·43‰ and ? 41·35‰ for Ames, ? 7·53‰ and ? 51·33‰ for Cedar Falls, and ? 6·01‰ and ? 38·19‰ for Iowa City, respectively. Although these data generally follow global trends, they are different when compared to a semi‐arid mid‐continental location in North Platt, Nebraska. The local meteoric water lines of Iowa are δ D = 7·68 δ18O + 8·0 for Ames, δ D = 7·62 δ18O + 6·07 for Cedar Falls, and δ D = 7·78 δ18O + 8·61 for Iowa City. The current Iowa study compares well with a study conducted in Ames, Iowa, 10 years earlier. The differences between Iowa and Nebraska studies are attributed to a variable climate across the northern Great Plains ranging from sub‐humid in the east to semi‐arid in the west. Iowa being further east in the region is more strongly influenced by a moist sub‐humid to humid climate fed by the tropical air stream from the Gulf of Mexico. The average d‐excess values are 10·06‰ for Ames, 8·92‰ for Cedar Falls and 9·92‰ for Iowa City. Eighty seven percent of the samples are within the global d‐excess range of 0‰ and 20‰. The results are similar to previous studies, including those by National Atmospheric Deposition Programs and International Atomic Energy Agency. It appears that the impact of recycled water or secondary evaporation on δ18O values of area precipitation is minimal. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
To improve spring runoff forecasts from subalpine catchments, detailed spatial simulations of the snow cover in this landscape is obligatory. For more than 30 years, the Swiss Federal Research Institute WSL has been conducting extensive snow cover observations in the subalpine watershed Alptal (central Switzerland). This paper summarizes the conclusions from past snow studies in the Alptal valley and presents an analysis of 14 snow courses located at different exposures and altitudes, partly in open areas and partly in forest. The long‐term performance of a physically based numerical snow–vegetation–atmosphere model (COUP) was tested with these snow‐course measurements. One single parameter set with meteorological input variables corrected to the prevailing local conditions resulted in a convincing snow water equivalent (SWE) simulation at most sites and for various winters with a wide range of snow conditions. The snow interception approach used in this study was able to explain the forest effect on the SWE as observed on paired snow courses. Finally, we demonstrated for a meadow and a forest site that a successful simulation of the snowpack yields appropriate melt rates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A raster‐based glacier sub‐model was successfully introduced in the distributed hydrological model FEST‐WB to simulate the water balance and surface runoff of large Alpine catchments. The glacier model is based on temperature‐index approach for melt, on linear reservoir for melt water propagation into the ice and on mass balance for accumulation; the initialization of the volume of ice on the basin was based on a formulation depending on surface topography. The model was first tested on a sub‐basin of the Rhone basin (Switzerland), which is for 62% glaciated; the calibration and validation were based on comparison between simulated and observed discharge from 1999 to 2008. The model proved to be suitable to simulate the typical discharge seasonality of a heavily glaciated basin. The performance of the model was also tested by simulating discharge in the whole Swiss Rhone basin, in which glaciers contribution is not negligible, in fact, in summer, about the 40% of the discharge is due to glacier melt. The model allowed to take into account the volume of water coming from glaciers melt and its simple structure is suitable for analysis of the effects of climate change on hydrological regime of high mountain basins, with available meteorological forcing from current RCM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Large water‐sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre‐impoundment and post‐impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock‐yard manure, and untreated human wastes measurably increased ammonia and organic‐nitrogen concentrations during low flows. Average total‐nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate‐organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended‐sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post‐impoundment period. If strategies to decrease total‐nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation of wetlands along the Missouri River could be part of such a nitrate‐reduction strategy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   

15.
This study involved a baseline evaluation of fluvial carbon export and degas rates in three nested rural catchments (1 to 80 km2) in Taboão, a representative experimental catchment of the Upper Uruguay River Basin. Analyses of the carbon content in stream waters and the catchment carbon yield were based on 4‐year monthly in situ data and statistical modeling using the United States Geological Survey load estimator model. We also estimated p CO2 and degas fluxes using carbonate equilibrium and gas‐exchange formulas. Our results indicated that the water was consistently p CO2 saturated (~90% of the cases) and that the steep terrain favors high gas evasion rates. The mean calculated fluvial export was 5.4 tC·km?2·year?1 with inorganic carbon dominating (dissolved inorganic carbon:dissolved organic carbon ratio >4), and degas rates (~40 tC km?2·year?1) were nearly sevenfold higher than the downstream export. The homogeneous land use in this nested catchment system results in similar water‐quality characteristics, and therefore, export rates are expected to be closely related to the rainfall–runoff relationships at each scale. Although the sampling campaigns did not fully reproduce storm‐event conditions and related effects such as flushing or dilution of in‐stream carbon, our results indicated a potential link between dissolved inorganic carbon and slower hydrological pathways related to subsurface water storage and movement.  相似文献   

16.
Urban expansion and the scarcity of water supplies in arid and semiarid regions have increased the importance of urban runoff to localized water resources. However, urban catchment responses to precipitation are poorly understood in semiarid regions where intense rainfall often results in large runoff events during the short summer monsoon season. To evaluate how urban runoff quantity and quality respond to rainfall magnitude and timing, we collected stream stage data and runoff samples throughout the 2007 and 2008 summer monsoons from four ephemeral drainages in Tucson, Arizona. Antecedent rainfall explained 20% to 30% of discharge (mm) and runoff ratio in the least impervious (22%) catchment but was not statistically related to hydrologic responses at more impervious sites. Regression models indicated that rainfall depth, imperviousness and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality did not vary with imperviousness or catchment size. Rainfall depth and duration, time since antecedent rainfall and event and cumulative discharge controlled runoff hydrochemistry and resulted in five specific solute response patterns: (i) strong event and seasonal solute mobilization (solute flush), (ii) event chemostasis and strong seasonal flush, (iii) event chemostasis and weak seasonal flush, (iv) event and seasonal chemostasis and (v) late seasonal flush. Our results indicate that hydrologic responses of semiarid catchments are controlled by rainfall partitioning at the event scale, whereas wetting magnitude, frequency and timing alter solute stores readily available for transport and control temporal runoff quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Our work analyses the intra‐annual variability of the volume of water stored in 15 forested headwater catchments from south‐central Chile, aiming at understanding how forest management, hydrology, and climate influence the dynamic components of catchment storage. Thus, we address the following questions: (a) How does the annual water storage vary in catchments located in diverse hydroclimatic conditions and subject to variable forest management? (b) Which natural (i.e., hydrologic regime and physiographic setting) and anthropogenic factors explain the variance in water storage? Results show that the annual catchment storage increases at the beginning of each hydrological year in direct response to increases in rainfall. The maximum water storage ranges from 666 to 1,272 mm in these catchments. The catchments with Pinus or Eucalyptus spp. cover store less water than the catchments with mixed forest species cover. Forest cover (biomass volume, plantation density, and percentage of plantation and age) has the primary control on dynamic storage in all catchments. These results indicate that forest management may alter the catchment water storage.  相似文献   

18.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A long-term salt balance model is coupled with the small catchment water balance model presented in Part 1 of this series of papers. The salt balance model was designed as a simple robust, conceptually based model of the fundamental salt fluxes and stores in forested and cleared catchments. The model has four interdependent stores representing salt storage in the unsaturated zone, the deep permanent saturated groundwater system, the near-stream perched groundwater system and in a ‘salt bulge’ just above the permanent water-table. The model has performed well in simulations carried out on Salmon and Wights, two small experimental catchments in south-west Western Australia. When applied to Wights catchment the salt balance model was able to predict the stream salinities prior to clearing of native forests, and the increased salinities after the clearing.  相似文献   

20.
The Dakar region is a mega city with multiple contaminant sources from urban expansion as well as industrial and agricultural activities. The major part of the region is underlain by unconfined sandy aquifer, which is vulnerable to contaminants derived from human land use. At present, the contaminated groundwater which extends over a large area in the suburban zone of Thiaroye poses a threat to the future of this valuable resource, and more specifically, a health threat. This study focuses on nitrate pollution occurrences and associated processes using nitrate isotope data (15NNO3, 18ONO3) combined with environmental isotopic tracers (18O, 2H, and 3H). Samples from 36 wells were collected to determine the level, distribution, and sources of contamination in relation to land use. Results indicate that shallow groundwater in the urbanized area of Thiaroye shows distinct evidence of surface contamination with nitrate as much as 300 mg/l NO3?. In rural area not serviced by water supply distribution network, much higher NO3? contents were found in few wells due to household and livestock feedlots. In most groundwater samples δ15N values ranged from + 10 to + 22‰, indicative of predominantly human and animal wastes. This was confirmed by environmental isotope data which suggest a mixture of polluted recharge waters. By using the dual δ15N vs δ18O as well as δ15N vs NO3? approach, denitrification may occur to some extent but it is blurred by mixing with new infiltrated nitrates and cycling derived from continuous leaky septic system. Results suggest that nitrate contamination of the aquifer is a consequence of unregulated urbanisation (homemade latrines), continuing contaminant transfer in shallow water depth where aerobic conditions prevail. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号