首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to understand the canopy interception of Qinghai spruce forest under conditions of different precipitation characteristics and canopy structures in the upper reach of Heihe River basin, northwestern China. On the basis of a continuous record covering our investigating period by an automatic throughfall‐collecting system, we analysed the relationships between the canopy interception and the precipitation characteristics. Our results support the well‐established exponential decay relationship between the gross precipitation and the interception percentage after the canopy is saturated. But our results sufficiently illustrate a notable point that the variations in the interception percentage are almost independent from the variations in the gross precipitation before the canopy is saturated. Our examination into the relationship between the interception and the 10‐min average intensity of precipitation demonstrates a divergent relationship, and the divergent relationship is bracketed by an upper ‘dry line’ indicating that 100% of gross precipitation was intercepted before saturation and by a lower ‘wet line’ suggesting that the actual canopy storage capacity reached the maximum and evaporation was the only component of the interception. To search for the relationship between canopy structures and interception, we grouped the canopy covers over the 90 throughfall‐collecting tanks into ten categories ranging from 0 (no cover) to 0.9 (nearly completely covered), and the corresponding canopy interception was calculated by subtracting the averaged throughfall of each canopy‐cover category from the gross precipitation. The results show that the interception percentage increases faster with increasing canopy cover under intermediate rainfall conditions than that under heavy rainfall conditions. Unexpectedly, under light rainfall conditions the increasing rate of interception percentage with increasing canopy cover and also with increasing plant area index is not faster than that under the intermediate rainfall conditions simply because the tank‐measured percentage of interception was extremely high at near‐zero canopy cover conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   

4.
Over a 4‐month summer period, we monitored how forest (Pinus sylvestris ) and heather moorland (Calluna spp. and Erica spp.) vegetation canopies altered the volume and isotopic composition of net precipitation (NP) in a southern boreal landscape in northern Scotland. During that summer period, interception losses were relatively high and higher under forests compared to moorland (46% of gross rainfall [GR] compared with 35%, respectively). Throughfall (TF) volumes exhibited marked spatial variability in forests, depending upon local canopy density, but were more evenly distributed under heather moorland. In the forest stands, stemflow was a relatively small canopy flow path accounting for only 0.9–1.6% of NP and only substantial in larger events. Overall, the isotopic composition of NP was not markedly affected by canopy interactions; temporal variation of stable water isotopes in TF closely corresponded to that of GR with differences of TF‐GR being ?0.52‰ for δ2H and ?0.14‰ for δ18O for forests and 0.29‰ for δ2H and ?0.04‰ for δ18O for heather moorland. These differences were close to, or within, analytical precision of isotope determination, though the greater differences under forest were statistically significant. Evidence for evaporative fractionation was generally restricted to low rainfall volumes in low intensity events, though at times, subtle effects of liquid–vapour moisture exchange and/or selective transmission though canopies were evident. Fractionation and other effects were more evident in stemflow but only marked in smaller events. The study confirmed earlier work that increased forest cover in the Scottish Highlands will likely cause an increase in interception and green water fluxes at the expenses of blue water fluxes to streams. However, the low‐energy, humid environment means that isotopic changes during such interactions will only have a minor overall effect on the isotopic composition of NP.  相似文献   

5.
Curtis D. Holder 《水文研究》2003,17(10):2001-2010
Fog precipitation occurs when fog droplets are filtered by the forest canopy and coalesce on the vegetative surfaces to form larger water droplets that drip to the forest floor. This study examines the quantity of throughfall compared with incident precipitation produced by the canopy of a lower montane rain forest (2100 m) and an upper montane cloud forest (2550 m) in the Sierra de las Minas Biosphere Reserve, Guatemala. Fog precipitation was measured with throughfall and precipitation gauges from 23 July 1995 to 7 June 1996. Fog precipitation occurred during sampling periods when throughfall exceeded incident precipitation. Fog precipitation contributed <1% of total water inputs in the cloud forest at 2100 m during the 44‐week period, whereas fog precipitation contributed 7·4% at 2550 m during the same period. The depth equivalent of fog precipitation was greater at 2550 m (203·4 mm) than at 2100 m (23·4 mm). The calculation of fog precipitation in this study is underestimated. The degree of underestimation may be evident in the difference in apparent rainfall interception between 2100 m (35%) and 2550 m (4%). Because the apparent interception rate at 2550 m is significantly lower than 2100 m, the canopy probably is saturated for longer periods as a result of cloud water contributions. Data show a seasonal pattern of fog precipitation most evident at the 2550 m site. Fog precipitation represented a larger proportion of total water inputs during the dry season (November to May). Because cloud forests generate greater than 1 mm day?1 of fog precipitation in higher elevations of the Sierra de las Minas, the conservation of the cloud forest may be important to meet the water demands of a growing population in the surrounding arid lowlands. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In this first paper of two, a numerical simulation model capable of simulating the spatial variability of rainfall partitioning within a canopy is presented. The second paper details how the model is parameterized, and some testing of its capabilities. The first stage of the model is to derive the mature canopy structure. This is achieved through simplified individual tree structures and a random placement routine based on a modified Poisson distribution. Following this the spatial discretization for throughfall is attained as a series of layers of triangles with a tree trunk at every apex. The number of layers is derived from the leaf area index through a modified Poisson distribution. Seasonal variation in the deciduous canopy is simulated through a time vector routine. The rainfall partitioning section of the model is based upon the Rutter model which has been modified to each individual triangle layer. The main feature of this model is that it offers a method of simulating rainfall partitioning at a scale that is a function of the size of the elementary physical components (tree and leaf scale). This can be used to investigate soil moisture variations under a canopy, or to study the variations within the forest hydrological processes themselves. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
Catchment hydrology is influenced by land‐use change through alteration of rainfall partitioning processes. We compared rainfall partitioning (throughfall, stemflow and interception) and soil water content in three land‐use types (primary forest, secondary forest and agriculture) in the Santa Fe region of Panama. Seasonal patterns were typified by larger volumes of throughfall and stemflow in the wet season, and the size of precipitation events was the main driver of variation in rainfall redistribution. Land‐use‐related differences in rainfall partitioning were difficult to identify due to the high variability of throughfall. However, annual throughfall in agricultural sites made up a larger proportion of gross precipitation than throughfall in forest sites (94 ± 1, 83 ± 6 and 81 ± 1% for agriculture, primary and secondary forests, respectively). Proportional throughfall (% of gross precipitation becoming throughfall) was consistent throughout the year for primary forest, but for secondary forest, it was larger in the dry season than the wet season. Furthermore, proportional stemflow in the dry season was larger in secondary forest than primary forest. Stemflow, measured only in primary and secondary forests, ranged between 0.9 and 3.2% of gross precipitation. Relative soil moisture content in agricultural plots was generally elevated during the first half of the dry season in comparison to primary and secondary forests. Because throughfall is elevated in agricultural plots, we suggest careful management of the spatial distribution and spread of this land‐use type to mitigate potential negative impacts in the form of floods and high erosion rates in the catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Di Wang  Li Wang 《水文研究》2019,33(3):372-382
Canopy interception is one of the most important processes in an ecosystem, but it is still neglected when assessing evapotranspiration (ET) partitioning in apple orchards on the Loess Plateau in China. To explore the importance of canopy interception, we monitored two neighbouring apple orchards on the Loess Plateau in China, one 8‐year‐old and the other 18‐years old at the start of the study, from May to September for four consecutive years (2013–2016). We measured parameters of canopy interception (I) including precipitation, throughfall, stemflow, leaf area index, transpiration (T), and soil evaporation (S) to quantify ET. The importance of canopy interception was then assessed by comparing the relationship between water supply (precipitation) and water demand (ET), calculated with and without considering canopy interception (T + S and T + S + I, respectively). Tree age clearly influenced canopy interception, as estimates of annual canopy interception during the study years in the younger and older orchards amounted to 22.2–29.4 mm and 26.8–39.9 mm, respectively. Daily incident rainfall and rainfall intensity in both orchards were significantly positively correlated with daily canopy interception in each year. The relationship between annual precipitation and annual ET (calculated with and without consideration of canopy interception) in the younger orchard differed during 2015 and 2016. Ignoring canopy interception would result in underestimation of annual ET in both apple orchards and hence incorrect evaluation of the relationship between water supply and water demand, particularly for the younger orchard during 2015 and 2016. Thus, for a complete understanding of water consumption in apple orchards in this and similar regions, canopy interception should not be ignored when assessing ET partitioning.  相似文献   

9.
Sugarcane is an annual crop with a dynamic canopy that changes over time mainly because of genetic adaptation. There is uncertainty about the temporal trends of throughfall (TF) in this important commercial crop. In the present paper, we used troughs to measure TF in a third and fourth ratoon and subsequently in a fourth and fifth ratoon. Additional measurements were carried out in an adjacent riparian forest. There were no significant differences between cycles of sugarcane, growth phases and riparian forest. The TF results for ratoon crop and riparian forest in 2011/2012 were 76% and 79.5% of gross rainfall, respectively, while in 2012/2013, they were 79% and 78%, respectively. However, TF was remarkably lower in the riparian forest relative to ratoon from the second half of the culm formation and elongation phase (280 days after harvest) until harvest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The determination of the earthquake energy budget remains a challenging issue for Earth scientists, as understanding the partitioning of energy is a key towards the understanding the physics of earthquakes. Here we estimate the partition of the mechanical work density into heat and surface energy (energy required to create new fracture surface) during seismic slip on a location along a fault. Earthquake energy partitioning is determined from field and microstructural analyses of a fault segment decorated by pseudotachylyte (solidified friction-induced melt produced during seismic slip) exhumed from a depth of ~ 10 km—typical for earthquake hypocenters in the continental crust. Frictional heat per unit fault area estimated from the thickness of pseudotachylytes is ~ 27 MJ m− 2. Surface energy, estimated from microcrack density inside clast (i.e., cracked grains) entrapped in the pseudotachylyte and in the fault wall rock, ranges between 0.10 and 0.85 MJ m− 2. Our estimates for the studied fault segment suggest that ~ 97–99% of the energy was dissipated as heat during seismic slip. We conclude that at 10 km depth, less than 3% of the total mechanical work density is adsorbed as surface energy on the fault plane during earthquake rupture.  相似文献   

11.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Methods for measuring throughfall, stemflow and, hence, interception in the tropical rainforests of the Wet Tropics region of North Queensland, Australia, were tested at three sites for between 581 and 787 days. The throughfall system design was based on long troughs mounted beneath the canopy and worked successfully under a range of rainfall conditions. Comparison of replicated systems demonstrated that the methodology is capable of capturing the variability in throughfall exhibited beneath our tropical rainforest canopies. Similarly, the stemflow system design which used spiral collars attached to sample trees worked well under a range of rainfall conditions and also produced similar estimates of stemflow in replicated systems. Higher altitude rainforests (>1000 m) in North Queensland can receive significant extra inputs of water as the canopy intercepts passing cloud droplets. This additional source of water is referred to as ‘cloud interception’ and an instrument for detecting this is described. The results obtained from this gauge are compared with cloud interception estimates made using a canopy water balance method. This method is based on stemflow and throughfall measurements and provides an alternative means to fog or cloud interception gauge calibration techniques used in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This article presents a comprehensive study of canopy interception in six rainforests in Australia's Wet Tropics for periods ranging between 2 and 3·5 years. Measurements of rainfall, throughfall, stemflow and cloud interception were made at sites characterized by different forest types, canopy structure, altitude, rainfall and exposure to prevailing winds. Throughfall at these sites ranged between 64 and 83% of total precipitation inputs, while stemflow ranged between 2 and 11%. At sites higher than 1000 m, cloud interception was found to contribute up to 66% of the monthly water input to the forest, more than twice the rainfall at these times. Over the entire study period, cloud interception accounted for between 4 and 30% of total precipitation inputs, and was related more to the exposure of sites to prevailing winds than to altitudinal differences alone. Over the duration of the study period, interception losses ranged between 22 and 29% of total water input (rainfall and cloud interception) at all sites except the highest altitude site on Bellenden Ker, where interception was 6% of total water input. This smaller interception loss was the result of extremely high rainfall, prolonged immersion in cloud and a sparser canopy. On a monthly basis, interception losses from the six sites varied between 10 and 88% of rainfall. All sites had much higher interception losses during the dry season than in the wet season because of the differences in storm size and rainfall intensity. The link between rainfall conditions and interception losses has important implications for how evaporative losses from forests may respond to altered rainfall regimes under climate change and/or large‐scale atmospheric circulation variations such as El Niño. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper a simple technique for field measurement of rain water loss arising from interception and water flows associated with species of small Mediterranean shrub is described: the ‘interception flow collection box’. This technique solves the problem of installing devices to control stemflow in species with a multiple trunk and demonstrates its efficiency through the results obtained from the data observed for three species of semi-arid Mediterranean shrub: Juniperus oxycedrus, Rosmarinus officinalis and Thymus vulgaris. Finally, the empirical equations for the prediction of throughfall, stemflow and rain water loss through interception are presented for the three selected species and the validity of the technique employed is established. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

16.
17.
The first results of the almost one year drop size distribution (DSD) measurement in the Czech Republic are summarised in this study. The ESA-ESTEC 2D videodistrometer was used to measure the rain drop parameters. The average DSD is shown to be of the gamma type. One minute DSDs were evaluated to test the accuracy of analytical DSD models. Parameters of gamma distribution and exponential distribution functions were evaluated for the whole data set as well as for the various rain rate intervals. Regression technique and the method of moments were applied to estimate the parameters of DSD. It is shown that the parameter value strongly depends on the method of computation as well as on the rain type. Its average value is about 0.59 for the average (smooth) one minute DSD while an average value of un-smoothed DSD is 11.0 (moment method) or 5.4 (regression technique). The Joss's shape parameter and the Tokay-Short's parameter CS estimating roughly the rain type are also discussed (if CS>1, the event should be convective). The tendency of increasing numerical value of the CS parameter with the increasing rain rate was observed (the DSDs were distributed into classes respecting the rain rate value) and thus the idea of the convectivity occurrence bounded with the higher CS parameter value was supported. The study also compares the parameters of the average DSD with the averages of parameter values of all 4 183 one minute DSDs.  相似文献   

18.
The water balance of four different rainforest types in the Wet Tropics region of north Queensland is inferred from measurements of canopy hydrological components undertaken for periods between 391 to 657 days. These measurements of rainfall, cloud interception, stem-flow, throughfall, canopy interception and transpiration have revealed considerable differences in the canopy water balance of different locations as a result of forest structural differences, altitude, exposure and climate. Cloud interception is a significant extra input of water to forests at high altitude sites (>1000 m) and varies between 7 and 29% of the total water input. At coastal and lower montane rainforests annual total evaporation is consistently around 50% of the total water input, but in upper montane cloud forest this drops dramatically to only 13% of the water input. At all sites actual evaporation is greater than potential evaporation for most of the year and on an annual basis exceeds potential by between 2 and 53%. The source of this additional energy is uncertain, but is likely to come from advection. Annual interception at all the rainforest sites was greater than annual transpiration, with transpiration dominating in the dry season and interception dominating in the wet season. All of the rainforests have a large annual net water balance to sustain runoff and recharge. Towards the end of the dry season runoff and recharge can cease in coastal lowland and lower mountain forests and they may have to draw on soil moisture and/or ground water at this time. In contrast, upper montane cloud forests have a positive net water balance throughout the year and are therefore an important source of dry season river flows. Furthermore, their exceptionally large annual runoff (∼6500 mm year−1) is a major source of downstream water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The forest canopy can play a significant role in modifying the amount and isotopic composition of water during its passage throughout the near-surface critical zone. Here, partitioning of gross rainfall into interception, throughfall, and stemflow and its implications for the amount and isotopic composition of soil water was studied for red oak, eastern white pine, and eastern hemlock trees in a northern hardwood-conifer forest in south central Ontario, Canada. Stemflow production was greatest for red oak as a result of its upward-projecting branches and least for eastern white pine due to its horizontal branches and rougher bark. These stemflow contributions to the near-bole soil surface failed to produce consistently wetter soils relative to distal locations from the bole for all tree species. There was also no consistent evidence of isotopic enrichment of throughfall and stemflow relative to gross rainfall or of stemflow relative to throughfall for red oak or eastern hemlock. However, there was isotopic enrichment of both throughfall and stemflow for eastern white pine with increasing maximum atmospheric vapour pressure deficit, which may reflect the potential for evaporative fractionation as a result of retention and detention of water moving through the canopy by the rougher bark of this species. Dry soil conditions limited sampling of mobile soil water during the study, and there was no consistent evidence that either throughfall or stemflow fluxes controlled temporal changes in the isotopic signature of soil water beneath the tree. Thus, the potential for throughfall and stemflow fluxes in northern hardwood-conifer forests to modify the isotopic composition of water taken up by the tree via transpiration remains an open question.  相似文献   

20.
Rainfall interception research in forest ecosystems usually focuses on interception by either tree crown or leaf litter, although the 2 components interact when rainfall occurs. A process‐based study was conducted to jointly measure rainfall interception by crown and litter and the interaction between the 2 interception processes for 4 tree species (Platycladus orientalis and Pinus tabulaeformis represented needle‐leaf species, and Quercus variabilis and Acer truncatum represented broadleaf species) at 3 simulated rainfall intensities (10, 50, and 100 mm hr?1). Results indicated that (a) crown and litter interception processes incorporated 3 phases: the dampening phase, the steady saturation phase, and the postrainfall drainage phase, but the dampening phase for litter interception usually lasted 30 min longer than for crown interception; (b) the maximum and minimum interception storage (C max and C min ) for the crown were 0.63 and 0.36 mm on average, and litter C max and C min were 5.38 and 2.36 mm, respectively; (c) generally, crown and litter C max and C min increased when gross precipitation increased significantly (p  < .05) from 10 to 100 mm; and (4) crown C max and C min for needle‐species were 1.8 and 1.2 times larger than broadleaf species, whereas broadleaf litter showed the opposite, its C max and C min were 2.0 and 1.6 times larger than needle‐leaf litter on average; however, no significant differences were observed in crown and litter C max and C min between species on per leaf area and litter thickness basis. Results were normalized by total leaf area and litter thickness to provide a way to scale up from young trees to mature forests. Overall, rainfall interception was affected by biotic and abiotic factors together and could be quantified via multiple linear regression functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号