首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the interplay between unsteady flow and bedform in a flood event on nitrogen cycling in the hyporheic zone (HZ) remains poorly understood. In this study, a reactive transport groundwater model with different flood hydrographs was proposed to investigate the effect of modified hyporheic flow on nitrate dynamics in the HZ, including nitrate source-sink function, response to the single-peak flood event and removal efficiency. The results demonstrate that there exists an optimal range of river channel gradients that could enhance the biogeochemical reactions (respiration, nitrification and denitrification) in a flood event. The HZ acts as a nitrate sink especially after the flood event, and its source-sink function is independent of the unsteady discharge/stage conditions. The nitrate in the HZ has a hysteretic response to peak stage/discharge, and its removal efficiency is decreased by up to 70% compared to steady flow conditions. These findings not only provide a better understanding of nitrogen dynamics under the effect of unsteady channel flow, but also can be applied for river restoration to efficiently remove nitrate in the HZ by modifying river channel gradients.  相似文献   

2.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   

3.
In watersheds impacted by nitrate from agricultural fertilizers, nitrification and denitrification may be decoupled as denitrification in the hyporheic zone is not limited to naturally produced nitrate. While most hyporheic research focuses on the 1–2 m of sediment beneath the stream bed, there are a limited number of studies that quantify nitrogen (N) cycling at larger hyporheic scales (10s of metres to kms). We conducted an investigation to quantify N cycling through a single meander of a low gradient, meandering stream, draining an agricultural watershed. Chemistry (major ions and N species) and hydrologic data were collected from the stream and groundwater beneath the meander. Evidence indicates that nearly all the shallow groundwater flowing beneath the meander originates as stream water on the upgradient side of the meander, and returns to the stream on the downgradient side. We quantified the flux of water beneath the meander using a numerical model. The flux of N into and out of the meander was quantified by multiplying the concentration of the important N species (nitrate, ammonium, dissolved organic nitrogen (DON)) by the modelled water fluxes. The flux of N into the meander is dominated by nitrate, and the flux of N out of the meander is dominated by ammonium and DON. While stream nitrate varied seasonally, ammonium and DON beneath the meander were relatively constant throughout the year. When stream nitrate concentrations are high (>2 mg litre?1), flow beneath the meander is a net sink for N as more N from nitrate in stream water is consumed than is produced as ammonium and DON. When stream nitrate concentrations are low (<2 mg litre?1), the flux of N entering is less than exiting the meander. On an annual basis, the meander hyporheic flow serves as a net sink for N. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
赵建成  杨扬  钟胜强  李锟  陈小刚 《湖泊科学》2016,28(6):1274-1282
实验设计中试水槽装置,模拟研究2种沉水植物轮叶黑藻(Hydrilla nerticillata)和苦草(Vallisneria natans)对农村水体的净化效果,并探讨沉水植物在水体氮、磷去除中的作用.结果显示,沉水植物系统均能显著降低水体中总氮、铵态氮、硝态氮和磷酸盐浓度,去除率分别达到50.5%、84.4%、41.9%和64.6%,且轮叶黑藻组选择20 g/m2,苦草组选择40 g/m2为适种密度.水体流经各串联单元时氮、磷去除负荷存在显著差异,其中总氮、硝态氮、磷酸盐浓度在有植物单元高于无植物单元,铵态氮浓度相反,结合单元内溶解氧浓度、硝化与反硝化细菌总数表明,有植物单元可显著发生反硝化作用,无植物单元可显著发生硝化作用,有无植物串联单元更有利于氮的去除.  相似文献   

5.
Statistical analysis of data collected in field observations of river water quality in an urban area was used to recognize characteristic features of the distribution and relationships between concentrations of mineral nitrogen forms in polluted surface waters. The distribution of the relative mole fraction of nitrites in water is always unimodal, while other N forms can have bimodal distributions. Significant correlations between the concentrations of nitrites, nitrates, ammonium, and the total mineral nitrogen were found to exist in waters heavily polluted with nitrogen compounds. These correlations are interpreted based on a simple kinetic model of nitrification and denitrification processes. Denitrification processes are shown to play an important role in nitrogen balance in polluted waters. An estimate is proposed for the admissible level of river water pollution by nitrogen-containing compounds.  相似文献   

6.
人工介质对富营养化水体中氮磷营养物质去除特性研究   总被引:1,自引:2,他引:1  
采用人工介质富集微生物对太湖梅梁湾水源水中氮磷营养物质的去除特性进行了试验研究.中试结果表明:随着介质密度和水力停留时间的增加,对氮磷营养物质的去除率均有提高.介质密度为26.8%、水力停留时间为5d时,人工介质对TN、TP、氨氮、亚硝态氮的去除率分别为26.6%、72.1%、43.2%、79.4%,可见人工介质对富营养化水体中氮磷营养物质有较好的去除效果.增加水流速度消除了池内的溶解氧和氧化还原电位的分层现象,提高了NH4 -N和NO2--N的去除效果,没有降低TP、PO43--P、DTP的去除效果,说明沉淀作用并不是去除水体中氮磷营养物质的主要途径.人工介质表面富集了大量的微生物,通过硝化-反硝化作用是富营养化水体水质改善的主要途径.  相似文献   

7.
The aim of this research work was to determine the major nitrogen transformation and removal mechanisms in primary and maturation ponds. To accomplished this objective, nitrogen mass balance in waste stabilization pond system was determined using a dynamic mathematical model in order to elucidate the biological nitrogen transformation mechanisms that are effective for removal of nitrogen in this pond system. Results show that nitrogen removal efficiency in a primary facultative pond unit was 13.2%, which was largely due to net loss of organic nitrogen to sediments (9.76%) and denitrification (3.42%). On the other hand, maturation pond removed 15.2% of nitrogen received in the influent with denitrification (13.55%) being the major pathway for nitrogen removal. Ammonia volatilization was not a predominant mechanism for nitrogen removal in both primary facultative and maturation ponds. The major nitrogen transformation routes were mineralization and ammonia uptake in the primary facultative pond, but ammonia uptake by microorganisms was a predominant nitrogen transformation mechanism in maturation pond.  相似文献   

8.
程月  李一平  施媛媛  唐春燕 《湖泊科学》2020,32(6):1646-1656
随着太湖流域控源截污和面源整治的推行,底泥释放成为太湖不可忽视的污染源.本文基于EFDC模型构建太湖沉积成岩模型以动态模拟底泥释放过程,以氨氮和硝态氮为水质目标,采用拉丁超立方抽样抽取沉积成岩模型的18个参数进行不确定性分析,采用标准秩逐步回归法进行敏感性分析.结果表明:对于大型浅水湖泊,沉积物-水界面的硝化作用、反硝化作用和扩散过程对底泥氮的释放影响很大,太湖氮浓度的不确定性有明显的时空差异,并且受藻类生长影响;随藻类生长生化反应参数的敏感性逐渐减弱,动力参数的敏感性逐渐增强,氨氮的主要敏感参数为孔隙水扩散系数和最优硝化反应速率,贡献率分别是41.68%和37.82%,硝态氮的主要敏感参数为孔隙水扩散系数和表层反硝化作用反应速率,贡献率分别是29.15%和42.34%,这些参数的取值需予以着重考虑.本研究识别出太湖底泥氮释放的关键物化过程,为模型调参提供优先级并给出优化区间,对减小模型的不确定性、提高模型精度有参考意义,为定性指导大型浅水湖泊底泥释放的室内实验模拟提供依据.  相似文献   

9.
A quantification of nitrifying and denitrifying bacteria present in different compartments (water, sediments, submerged macrophytes) of a treated sewage channel was made to estimate their influence on the nitrogen balance and to assess the significance of macrophytes for nitrification and nitrogen conversions in general. Considerable numbers of autotrophic and heterotrophic nitrifying and denitrifiying bacteria were found to be present in the epiphytic communities of different species of submerged macrophytes of a treated sewage channel. Comparing the influence of the different compartments on total stream nitrification and denitrification it could be concluded that dense beds of submerged macrophytes particularly positively influence nitrification. Epiphytic nitrifiers were estimated to be as important for the total nitrification as nitrifiers in the sediment. Denitrification was mainly taking place in the sediment. The influence of the suspended nitrifiers and denitrifiers on the nitrogen balance was assumed to be negligible.  相似文献   

10.
The hyporheic zone (HZ) has the capability to eliminate and attenuate nutrients and contaminants in riverine systems. Biogeochemical reactions and the potential elimination of contaminants are strongly controlled by the flow paths and dynamics in the HZ. Nevertheless, an easily applicable method for the field determination of flow patterns in the HZ is still lacking. Therefore, a heat pulse technique, which traces the movement of a short heat pulse in the upper part of the HZ and other sand beds, was developed. Five rods are vertically driven into the sediment of the streambed; one rod with a heater as point source located in about 10‐cm sediment depth and four rods with four temperature sensors in 3 cm distance, arranged concentrically with 7 cm diameter around the heating rod. Subsequently, a heat pulse is applied and the resulting breakthrough curves are indicative of flow velocities and flow directions in the streambed. A rough data analysis procedure is also suggested. In addition, laboratory experiments were performed to test the heat pulse technique. These experiments were validated based on coupled numerical modelling of flow and heat transport. First field tests of the method prove that the method is easily applicable under field conditions. These first field tests showed highly complex flow patterns with flow velocities from 1·8 to 4·9 cm min?1 and flow directions from parallel to surface flow to opposite to surface flow. This suggests the need for a robust method to quantify hyporheic flow patterns in situ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In a batch experiment with activated sludge from a large-scale plant the hydrolytical and biochemical degradation of dimethylformamide (DMF) and its reaction product dimethylamine (DMA) and the conversion connected with this under aerobic and anaerobic conditions is investigated. Parallel to the hydrolysis of DMF the biochemical degradation of DMA occurs. The extensive conversion of these substrates is followed by the nitrification of the ammoniumions formed, and under subsequent anaerobic conditions with methanol as the carbon source also denitrification can be achieved. If the oxygen supply of the activated sludge is insufficient, however, also DMA can be used as a carbon source for denitrification, ammonium-ions being released from DMA in addition. In the batch experiment the elimination rates referred to nitrogen were 7 … 14 mg/g · h for DMF, 0.8 … 1.7 mg/g · h for DMA, 0.3 … 0.6 mg/g · h for NH and 0.4 to 1.3 mg/g · h for nitrate in the presence of methanol. DMF and DMA are obviously not suitable as the only carbon source for denitrification.  相似文献   

12.
A study was made of the nitrogen (N) inputs to, and exports from, a stream draining a pasture catchment near Hamilton, New Zealand, in order to plan measures for minimizing N losses to natural waters. An estimated 7 kg N ha?1 was exported from the catchment during 1981 of which 86 per cent was in reduced forms (Kjeldahl-N, TKN) and the remainder as nitrate-N (NO3-N). Virtually all of the reduced N inputs came from saturated overland flow whereas NO3-N inputs were dominantly subsurface derived. The TKN exported by individual storm events could be predicted (R2 = 0.97) from peak flow and from the peak flow rate in the seven days preceding the storm. A TKN balance for eight events showed that except for large floods (return period approximately a year) the stream system was a net sink for TKN. During large floods, scouring of the organic rich seepage areas resulted in the stream system itself being a net source of TKN. Microbial assays for nitrification and denitrification activity indicated that the main nitrate source was the well-aerated greywacke and ash soils and that the permanently saturated seepage zones were a significant nitrate sink. An in-stream nitrate addition experiment showed that up to 20mg N m?2 h?1 was removed from the stream. Simultaneous measurements of in situ denitrification activity demonstrated that only about 1 per cent of this removal could be accounted for by denitrification. It was inferred that plant uptake was responsible for the remainder. Retention of near-stream seepage areas is suggested as a measure for minimizing NO3-N export, whilst removal of stock from seasonally saturated areas during periods of saturatior should reduce soil loss and hence TKN inputs to the stream.  相似文献   

13.
The aim of this study was to quantify the N removal efficiency of an Ulva-based phytotreatment system receiving wastewaters from a land-based fish farm (Orbetello, Italy), to identify the main biogeochemical pathways involved and to provide basic guidelines for treatment implementation and management. Fluxes of O2 and nutrients in bare and in Ulva colonised sediments were assessed by light/dark core incubations; denitrification by the isotope pairing technique and Ulva growth by in situ incubation of macroalgal disks in cages. O2 and nutrient budgets were estimated as sum of individual processes and further verified by 24-h investigations of overall inlet and outlet loads. Ulva uptake (up to 7.8 mmol Nm(-2) h(-1)) represented a net sink for water column and regenerated NH4+ whilst N removal via denitrification (10-170 micromol Nm(-2) h(-1)) accounted for a small percentage of inorganic nitrogen load (<5%). Laboratory experiments demonstrated a high potential for denitrification (over 800 microM Nm(-2) h(-1)) indicating that N loss could be enhanced. The control of Ulva standing stocks by optimised harvesting of surplus biomass may represent an effective strategy to maximise DIN removal and could result in the assimilation of approximately 50% of produced inorganic nitrogen.  相似文献   

14.
Hyporheic restoration is of increasing interest given the role of hyporheic zones in supporting ecosystem services and functions. Given the prevalence of sediment pollution to waterways, an emerging restoration technique involves the removal of sediment from the interstices of gravel‐bed streams. Here, we document streambed sediment removal following a large, accidental release of fine sediment into a gravel‐bed river. We use this as a natural experiment to assess the impact of fine sediment removal on reach‐scale measures of transient storage and to document the responses of reaches with contrasting morphology (restored vs. unrestored) to changing discharge one‐field season. We conducted a series of conservative solute tracer experiments in each reach, interpreting both summary statistics for the recovered in‐stream solute tracer time series. Additionally, we applied the transient storage model to interpret the results via model parameters, including a Monte Carlo analysis to measure parameter identifiability and sensitivity in each experiment. Despite the restoration effort resulting in an open matrix gravel bed in the restored reach, we did not find the significant differences in most time series metrics describing reach‐scale transport and transient storage. We hypothesize that this is due to enhanced vertical exchange with the gravel bed in the restored reach replacing lateral exchange with macrophyte beds in the unrestored reach, developing a conceptual model to explain our findings. Consequently, we found that the impact of reach‐scale removal of fine sediment is not measureable using reach‐scale solute tracer studies. We offer recommendations for future studies seeking to measure the impacts of stream restoration at the reach scale.  相似文献   

15.
16.
Preliminary nitrogen isotope data for ammonia from animal urine, fuel combustion, fertilizer use and fertilizer factories have been measured or estimated. It turns out that direct nitrogen isotope measurements of atmospheric ammonia at Jülich are in the expected range calculated from the ranges of different sources. For deposition of atmospheric ammonium in Jülich-rain a depletion in15N with respect to atmospheric ammonia has been found which is explained by isotope fractionations during rainout and washout. In correspondence with this fractionation model are nitrogen isotope data of rain-ammonium from coastal areas, which are enriched in15N due to the fact that sea water acts as a sink for atmospheric ammonia.For Jülich rain-nitrate a pronounced seasonal trend has been detected with lower15N data in spring and summer than in autumn and winter. This trend is interpreted by different nitrogen isotope data of anthropogenic and natural nitric oxides which have been measured or estimated from isotope fractionation effects during nitrification and denitrification reactions in soils. It should be possible to get better global estimations for anthropogenic and natural nitric oxides from nitrogen isotope measurements.  相似文献   

17.
湖泊底泥疏浚环境效应:Ⅲ.对沉积物反硝化作用的影响   总被引:7,自引:1,他引:7  
通过为期一年的疏浚模拟试验,在试验室培养疏浚与对照柱样,研究了底泥疏浚对沉积物反硝化过程的影响.沉积物反硝化速率的测定采用经典的乙炔抑制法.研究结果表明,在一年的试验周期内,疏浚和对照柱沉积物的反硝化速率分别为6.9-26.9nmol/(g·h)和21.6-102.7nmol/(g·h),除2006年的2月外的其他月份,疏浚沉积物的反硝化速率显著(P<0.05)低于未疏浚对照沉积物,同时还研究了环境因子对沉积物反硝化速率的影响,结果表明,疏浚和对照沉积物的反硝化速率都受温度的控制.硝态氟浓度是疏浚和对照沉积物反硝化速率的主要限制因子,有机碳对疏浚沉积物的反硝化速率有影响,但对未疏浚对照沉积物的反硝化速率没有影响.疏浚后短期内沉积物反硝化速率低于未疏浚对照沉积物,可看作是底泥疏浚在富营养华水体脱氮方面的一个负效应.  相似文献   

18.
为验证利用不同物候期水生植物配置提高碳氮比失衡湿地脱氮能力的可行性,设计了向水芹菜(Oenanthe javanica)浮床人工湿地系统中添加轮叶黑藻(Hydrilla verticillata)的实验,研究了在秋、冬季低温条件下,暖季型植物分解释碳对系统氮去除效果的影响.结果表明,添加轮叶黑藻显著提高了系统水体碳氮比,促进反硝化作用,提高总氮和硝态氮的去除率.在4个周期中,与对照组相比,物候期组合型浮床人工湿地系统的总氮去除率分别提升23.03%、10.90%、18.55%和22.93%,硝态氮去除率分别提升38.28%、20.74%、17.87%和17.06%.由此可见,利用暖季型和冷季型植物配置提高碳氮比失衡湿地氮去除率是可行的.  相似文献   

19.
A three‐dimensional model for predicting redox controlled, multi‐species reactive transport processes in groundwater systems is presented. The model equations were fully integrated within a MODFLOW‐family reactive transport code, RT3D. The model can simulate organic compound biodegradation coupled to different terminal electron acceptor processes. A computational approach, which uses the spatial and temporal distribution of the rates of different redox reactions, is proposed to map redox zones. The method allows one to quantify and visualize the biological degradation reactions occurring in three distinct patterns involving fringe, pseudo‐core and core processes. The capabilities of the numerical model are demonstrated using two hypothetical examples: a batch problem and a simplified two‐dimensional reactive transport problem. The model is then applied to an unconfined aquifer underlying a leaking landfill located near the city of Turin, in Piedmont (Italy). At this site, high organic load from the landfill leachate activates different biogeochemical processes, including aerobic degradation, denitrification, manganese reduction, iron reduction, sulfate reduction and methanogenesis. The model was able to describe and quantify these complex biogeochemical processes. The proposed model offers a rational framework for simulating coupled reactive transport processes occurring beneath a landfill site. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presented trend analysis of droughts in Kerala, Telangana, and Orissa meteorological subdivisions in India and proposed a framework for drought prediction by employing the Empirical Mode Decomposition (EMD)‐based prediction models. The study used 3‐month standardized precipitation index (SPI3) for drought analysis. The trend analysis of SPI3 series for the period 1871–2012 using Mann–Kendall method showed statistically significant increasing trend in Kerala and Telangana subdivisions and a decreasing trend in Orissa subdivision. In addition, the non‐linear trend component extracted from EMD showed statistically significant changes in all the three subdivisions. Then, the study proposed a hybrid approach for prediction of short‐term droughts by coupling multivariate extension of EMD (MEMD) with stepwise linear regression (SLR) and genetic programming (GP) methods. First, the multivariate dataset comprising the SPI3 series of current and lagged time steps are decomposed using the MEMD. Then, SLR/GP models are developed to predict each subseries of SPI3 of desired time step considering the subseries of predictor variables at the corresponding timescales as inputs. The resulting models at different timescales are recombined to obtain the SPI3 values of the desired time step. The method is applied for prediction of short‐term droughts in the three subdivisions. The results obtained by the hybrid models are compared with that obtained by conventional prediction models using M5 Model Trees and GP. The rigorous performance evaluation based on multiple statistical criteria clearly exhibited the superiority of the hybrid approaches (i.e., prediction models with MEMD‐based decomposition over models without decomposition) for prediction of SPI3 in three subdivisions. Further, the study found that MEMD‐GP model performs marginally better than the MEMD‐SLR model due to its efficacy in modelling high frequency modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号