共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient evolution and adjustment to changing tectonic and climatic boundary conditions is an essential attribute of landscapes, and characterizing transient behavior is a key to understanding their dynamics and history. Developing new approaches to detect such transience has been explored by various methods, in particular to identify landscape response to Late Cenozoic and Quaternary climatic changes. Such studies have often focused on regions of high relief and/or active tectonic activity where interferences between tectonic and climatic signals might complicate the interpretation of the observations. We investigated the case of the hillslopes of the Serra do Cipó quartzitic range in SE Brazil in order to detect and quantify transience in a tectonically quiescent landscape over 100-ka timescales. We determined hilltop curvature from a high-resolution digital surface model derived from Pléiades imagery and measured cosmogenic nuclide (10Be and 26Al) concentrations at these hilltop sites. We compare both observations with predictions of hillslope diffusion theory, observing a distinctive signature of an acceleration of denudation. We performed a joint inversion of topographic and isotopic data to retrieve an evolution of the hillslope sediment transport coefficient through time. The timing of the increase in denudation cannot be unequivocally associated with a single climatic event but is consistent with important, climatically modulated fluctuations in precipitation and erosion in this area during the Middle and Late Pleistocene. 相似文献
2.
In December 2008, 694 trees uprooted within a 108 ha (1·08 km2) watershed in central Massachusetts due to a severe ice storm, resulting in the displacement of ~1300 m3 of root material, unconsolidated sediment, and fractured bedrock. Overall, we find that uprooting and tree throw is often grouped in clusters and cascades; conifers displace more material than deciduous trees; areas with abundant mature hemlock and steep slopes are more susceptible to tree throw, with clusters as dense as 125 per hectare; and failure is predominantly downhill, suggesting that ice storms promote efficient downslope hillslope sediment transport in northern hardwood forests. Combining the recurrence interval of severe storms in New England (20–75 years) with the forest response presented here, we calculate a sediment transport rate of 2–5 × 10?5 m3 m?1 a?1 averaged over the entire watershed. Forest susceptibility to tree throw differed based on location in the watershed; some areas experienced up to ~30× higher than average sediment transport rates, while others experienced no tree throw. Two severe storms following the 2008 ice storm (hurricane in 2011; snow storm in October 2012) did not result in significant tree throw within the study area, highlighting that the coupling of storm severity and forest susceptibility controls the amount of tree throw during a given forest disturbance. In addition to recent tree throw from the 2008 ice storm, widespread pit and mound microtopography in the study area indicates that tree throw is a recurrent process in this landscape. Two factors emerge that will influence future ice storms related hillslope sediment transport in the steep forested hillslopes of New England: regional climate gradients and changing climate determine the size, intensity and recurrence of ice storms; forest management practices and health control the tree age and type. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Young basalt terrains offer an exceptional opportunity to study landscape and hydrologic evolution through time, since the age of the landscape itself can be determined by dating lava flows. These constructional terrains are also highly permeable, allowing one to examine timescales and process of geomorphic evolution as they relate to the partitioning of hydrologic flowpaths between surface and sub‐surface flow. The western slopes of the Cascade Range in Oregon, USA are composed of a thick sequence of lava flows ranging from Holocene to Oligocene in age, and the landscape receives abundant precipitation of between 2000 and 3500 mm per year. On Holocene and late Pleistocene lava landscapes, groundwater systems transmit most of the recharge to large springs (≥0·85 m3 s?1) with very steady hydrographs. In watersheds >1 million years old, springs are absent, and well‐developed drainage networks fed by shallow subsurface stormflow produce flashy hydrographs. Drainage density slowly increases with time in this basalt landscape, requiring a million years to double in density. Progressive hillslope steepening and fluvial incision also occur on this timescale. Springs and groundwater‐fed streams transport little sediment and hence are largely ineffective in incising river valleys, so fluvial landscape dissection appears to occur only after springs are replaced by shallow subsurface stormflow as the dominant streamflow generation mechanism. It is proposed that landscape evolution in basalt terrains is constrained by the time required for permeability to be reduced sufficiently for surface flow to replace groundwater flow. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
4.
While the role of groundwater in flushing of solutes has long been recognized, few studies have explicitly studied the within‐event changes in groundwater chemistry. We compared the changes in groundwater chemistry during storm events for a wetland and hillslope position in a small (1·5 ha) glaciated, forested catchment in western New York. Flushing responses for dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3) and sulfate (SO4) in wetland and hillslope groundwaters were also compared against the corresponding responses in stream water. Eight storm events with varying intensity, amount, and antecedent moisture conditions were evaluated. Solute flushing patterns for wetland and hillslope groundwaters differed dramatically. While DOC concentrations in wetland groundwater followed a dilution trend, corresponding values for hillslope groundwater showed a slight increase. Concentrations for NO3 in wetland groundwater were below detection limits, but hillslope groundwaters displayed high NO3 concentrations with a pronounced increase during storm events. Flushing responses at all positions were also influenced by the size of the event and the time between events. We attributed the differences in flushing to the differences in hydrologic flow paths and biogeochemical conditions. Flushing of the wetland did appear to influence storm‐event stream chemistry but the same could not be said for hillslope groundwaters. This suggests that while a variety of flushing responses may be observed in a catchment, only a subset of these responses affect the discharge chemistry at the catchment outlet. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Landscapes evolve in response to external forces, such as tectonics and climate, that influence surface processes of erosion and weathering. Internal feedbacks between erosion and weathering also play an integral role in regulating the landscapes response. Our understanding of these internal and external feedbacks is limited to a handful of field‐based studies, only a few of which have explicitly examined saprolite weathering. Here, we report rates of erosion and weathering in saprolite and soil to quantify how climate influences denudation, by focusing on an elevation transect in the western Sierra Nevada Mountains, California. We use an adapted mass balance approach and couple soil‐production rates from the cosmogenic radionuclide (CRN) 10Be with zirconium concentrations in rock, saprolite and soil. Our approach includes deep saprolite weathering and suggests that previous studies may have underestimated denudation rates across similar landscapes. Along the studied climate gradient, chemical weathering rates peak at middle elevations (1200–2000 m), averaging 112·3 ± 9·7 t km–2 y–1 compared to high and low elevation sites (46·8 ± 5·2 t km?2 y?1). Measured weathering rates follow similar patterns with climate as those of predicted silica fluxes, modeled using an Arrhenius temperature relationship and a linear relationship between flux and precipitation. Furthermore, chemical weathering and erosion are tightly correlated across our sites, and physical erosion rates increase with both saprolite weathering rates and intensity. Unexpectedly, saprolite and soil weathering intensities are inversely related, such that more weathered saprolites are overlain by weakly weathered soils. These data quantify exciting links between climate, weathering and erosion, and together suggest that climate controls chemical weathering via temperature and moisture control on chemical reaction rates. Our results also suggest that saprolite weathering reduces bedrock coherence, leading to faster rates of soil transport that, in turn, decrease material residence times in the soil column and limit soil weathering. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
The advance of a chemical weathering front into the bedrock of a hillslope is often limited by the rate weathering products that can be carried away, maintaining chemical disequilibrium. If the weathering front is within the saturated zone, groundwater flow downslope may affect the rate of transport and weathering—however, weathering also modifies the rock permeability and the subsurface potential gradient that drives lateral groundwater flow. This feedback may help explain why there tends to be neither “runaway weathering” to great depth nor exposed bedrock covering much of the earth and may provide a mechanism for weathering front advance to keep pace with incision of adjacent streams into bedrock. This is the second of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory. Here, we show how a simplified kinetic model of 1‐D rock weathering can be extended to consider lateral flow in a 2‐D hillslope. Exact and approximate analytical solutions for the location and thickness of weathering within the hillslope are obtained for a number of cases. A location for the weathering front can be found such that lateral flow is able to export weathering products at the rate required to keep pace with stream incision at steady state. Three pathways of solute export are identified: “diffusing up,” where solutes diffuse up and away from the weathering front into the laterally flowing aquifer; “draining down,” where solutes are advected primarily downward into the unweathered bedrock; and “draining along,” where solutes travel laterally within the weathering zone. For each pathway, a different subsurface topography and overall relief of unweathered bedrock within the hillslope is needed to remove solutes at steady state. The relief each pathway requires depends on the rate of stream incision raised to a different power, such that at a given incision rate, one pathway requires minimal relief and, therefore, likely determines the steady‐state hillslope profile. 相似文献
7.
Leonard S. Sklar Clifford S. Riebe Jennifer Genetti Shirin Leclere Claire E. Lukens 《地球表面变化过程与地形》2020,45(8):1828-1845
The size distributions of sediment delivered from hillslopes to rivers profoundly influence river morphodynamics, including river incision into bedrock and the quality of aquatic habitat. Yet little is known about the factors that influence size distributions of sediment produced by weathering on hillslopes. We present results of a field study of hillslope sediment size distributions at Inyo Creek, a steep catchment in granitic bedrock of the Sierra Nevada, USA. Particles sampled near the base of hillslopes, adjacent to the trunk stream, show a pronounced decrease in sediment size with decreasing sample elevation across all but the coarsest size classes. Measured size distributions become increasingly bimodal with decreasing elevation, exhibiting a coarse, bouldery mode that does not change with elevation and a more abundant finer mode that shifts from cobbles at the highest elevations to gravel at mid elevations and finally to sand at low elevations. We interpret these altitudinal variations in hillslope sediment size to reflect changes in physical, chemical, and biological weathering that can be explained by the catchment's strong altitudinal gradients in topography, climate, and vegetation cover. Because elevation and travel distance to the outlet are closely coupled, the altitudinal trends in sediment size produce a systematic decrease in sediment size along hillslopes parallel to the trunk stream. We refer to this phenomenon as ‘downvalley fining.’ Forward modeling shows that downvalley fining of hillslope sediment is necessary for downstream fining of the long-term average flux of coarse sediment in mountain landscapes where hillslopes and channels are coupled and long-term net sediment deposition is negligible. The model also shows that abrasion plays a secondary role in downstream fining of coarse sediment flux but plays a dominant role in partitioning between the bedload and suspended load. Patterns observed at Inyo Creek may be widespread in mountain ranges around the world. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. 相似文献
8.
Field evidence for the influence of weathering on rock erodibility and channel form in bedrock rivers 总被引:1,自引:0,他引:1 下载免费PDF全文
Charles M. Shobe Gregory S. Hancock Martha C. Eppes Eric E. Small 《地球表面变化过程与地形》2017,42(13):1997-2012
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
9.
In this article we craft process‐specific algorithms that capture climate control of hillslope evolution in order to elucidate the legacy of past climate on present critical zone architecture and topography. Models of hillslope evolution traditionally comprise rock detachment into the mobile layer, mobile regolith transport, and a channel incision or aggradation boundary condition. We extend this system into the deep critical zone by considering a weathering damage zone below the mobile regolith in which rock strength is diminished; the degree of damage conditions the rate of mobile regolith production. We first discuss generic damage profiles in which appropriate length and damage scales govern profile shapes, and examine their dependence upon exhumation rate. We then introduce climate control through the example of rock damage by frost‐generated crack growth. We augment existing frost cracking models by incorporating damage rate limitations for long transport distances for water to the freezing front. Finally we link the frost cracking damage model, a mobile regolith production rule in which rock entrainment is conditioned by the damage state of the rock, and a frost creep transport model, to examine the evolution of an interfluve under oscillating climate. Aspect‐related differences in mean annual surface temperatures result in differences in bedrock damage rate and mobile regolith transport efficiency, which in turn lead to asymmetries in critical zone architecture and hillslope form (divide migration). In a quasi‐steady state hillslope, the lowering rate is uniform, and the damage profile is better developed on north‐facing slopes where the frost damage process is most intense. Because the residence times of mobile regolith and weathered bedrock in such landscapes are on the order of 10 to 100 ka, climate cycles over similar timescales result in modulation of transport and damage efficiencies. These lead to temporal variation in mobile regolith thickness, and to corresponding changes in sediment delivery to bounding streams. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
Controls on deep critical zone architecture: a historical review and four testable hypotheses 总被引:1,自引:0,他引:1 下载免费PDF全文
The base of Earth's critical zone (CZ) is commonly shielded from study by many meters of overlying rock and regolith. Though deep CZ processes may seem far removed from the surface, they are vital in shaping it, preparing rock for infusion into the biosphere and breaking Earth materials down for transport across landscapes. This special issue highlights outstanding challenges and recent advances of deep CZ research in a series of articles that we introduce here in the context of relevant literature dating back to the 1500s. Building on several contributions to the special issue, we highlight four exciting new hypotheses about factors that drive deep CZ weathering and thus influence the evolution of life‐sustaining CZ architecture. These hypotheses have emerged from recently developed process‐based models of subsurface phenomena including: fracturing related to subsurface stress fields; weathering related to drainage of bedrock under hydraulic head gradients; rock damage from frost cracking due to subsurface temperature gradients; and mineral reactions with reactive fluids in subsurface chemical potential gradients. The models predict distinct patterns of subsurface weathering and CZ thickness that can be compared with observations from drilling, sampling and geophysical imaging. We synthesize the four hypotheses into an overarching conceptual model of fracturing and weathering that occurs as Earth materials are exhumed to the surface across subsurface gradients in stress, hydraulic head, temperature, and chemical potential. We conclude with a call for a coordinated measurement campaign designed to comprehensively test the four hypotheses across a range of climatic, tectonic and geologic conditions. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
11.
Data describing sediment generation focusing on the temporal evolution of size gradation are required for the prediction of long‐term landform evolution. This paper presents such data for the salt weathering of a quartz‐chlorite schist obtained from the Ranger Uranium Mine in northern Australia. Rock fragment samples are subjected to three different climate regimes: (1) a dry season climate; (2) a wet season climate (both based on observations at the Ranger site); and (3) an oven‐drying sequence designed to test the sensitivity of the weathering process by exposing the rocks to more extreme temperatures. Two MgSO4 salt solutions are applied, one being typical of wet season runoff and the other a more concentrated solution. Salt solution is applied daily in the wet season experiments and once only at the beginning of the dry season experiments. Results of the experiments reveal four stages of weathering. The kinetics of each stage are described and related to the formation of sediment of different sizes. Wet season climate conditions are shown to produce greater moisture variability and lead to faster weathering rates. However, salt concentrations in the wet season are typically lower and so when climate is combined with observed salt concentrations, the dry and wet season experiments weather at approximately equal rates. Finally, small variations in rock properties were shown to have a large impact on weathering rates, leading to the conclusion that rock weathering experiments need to be carefully designed if results are to be used to help predict weathering behaviour at the landscape scale. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
12.
S.T. Nelson B. Barton M.W. Burnett J.H. McBride L. Brown I. Spring 《地球表面变化过程与地形》2020,45(12):2940-2953
The Hawaiian Islands permit investigation of tropical chemical weathering rates and processes on a single rock type, basalt. Chronosequences are investigated as a function of rainfall due to the varying age of each island, including Kauai (~4 Ma), Oahu (~2 Ma), and Hawaii's Kohala Peninsula (~0.3 to 0.17 Ma). Understanding tropical critical zone (CZ) development is vital given the large populations in developing countries that rely on it. HVSR (horizontal-to-vertical spectral ratio) seismic soundings on Kauai indicate that ~60% of the variability in laterite thickness is due to gradients in precipitation, with errors in erosion corrections and variability in the original permeability structure of the volcanic sequence playing important roles. Basalts have higher horizontal than vertical hydraulic conductivity (Kh > Kv) , and local variability in likely drives much of the remaining differences in laterite thickness. HVSR is well suited for estimating laterite thickness as it has been shown to reliably detect the base of the weathering profile, is rapid (20 min/sounding), highly portable, and occupies a very small footprint. Comparison of Kauai and Oahu weathering profiles suggests that the Oahu laterites are fully or nearly fully formed, despite being half the age of Kauai. By contrast, the young laterites on Kohala (~170 to ~300 ka) exhibit greatly contrasting thicknesses, where coastal laterites are thick and interior laterites are thin, suggesting that early weathering on shield volcanoes produces wedge-shaped laterites near the coast. With time, the thick (coastal) end of the wedge propagates upslope such that a fully developed, constant-thickness laterite carapace can form in ~2 Ma or less. The development of thickened coastal laterites on young substrates depends on greater water–rock ratios as vertically infiltrating water upslope is diverted laterally. This view of laterite development is very different compared to endmember models of continental weathering and CZ development. © 2020 John Wiley & Sons, Ltd. 相似文献
13.
The potentially important influence of climate change on landscape evolution and on critical zone processes is not sufficiently understood. The relative contribution of hydro-climatic factors on hillslope erosion rates may significantly vary with topography at the watershed scale. The objective of this study is to quantify the hydro-geomorphic behavior of two contrasting landscapes in response to different climate change scenarios in the Luquillo Critical Zone Observatory, a site of particular geomorphological interest, in terms of hillslope erosion and rainfall-triggered landslides. We investigate the extent to which hillslope erosion and landslide occurrence remain relatively invariant with future hydro-climatic perturbations. The adjacent Mameyes and Icacos watersheds are studied, which are underlain by contrasting lithologies. A high resolution coupled hydro-geomorphic model based on tRIBS (Triangulated Irregular Network-based Real-time Integrated Basin Simulator) is used. Observations of landslide activity and hillslope erosion are used to evaluate the model performance. The process-based model quantifies feedbacks among different hydrologic processes, landslide occurrence, and topsoil erosion and deposition. Simulations suggest that the propensity for landslide occurrence in the Luquillo Mountains is controlled by tropical storms, subsurface water flow, and by non-climatic factors, and is expected to remain significant through 2099. The Icacos watershed, which is underlain by quartz diorite, is dominated by relatively large landslides. The relative frequency of smaller landslides is higher at the Mameyes watershed, which is underlain by volcaniclastic rock. While projections of precipitation decrease at the study site may lead to moderate decline in hillslope erosion rates, the simulated erosional potential of the two diverse landscapes likely remains significant. © 2018 John Wiley & Sons, Ltd. 相似文献
14.
Lateritic weathering profiles (LWPs) are widespread in the tropics and comprise an important component of the Critical Zone (CZ). The Hawaiian Islands make an excellent natural laboratory for examining the tropical CZ, where the bedrock composition (basalt) is nearly uniform and rainfall varies greatly. This natural laboratory is employed to assess the utility of the HVSR (horizontal/vertical spectral ratio) method to characterize the shear-wave velocity (Vs) structure of LWPs, particularly the depth to the contact between saprolite and basalt bedrock. LWP thicknesses determined from HVSR provide good agreement with multi-channel analysis of surface waves (MASW) profiles, well logs and outcrop. LWP thicknesses may be estimated from the fundamental mode equation or through forward models. Prior knowledge about the subsurface from well, outcrop, and MASW profiles may greatly aid modeling in some cases. For the 3.2 to 1.8 Ma Koolau Volcano on Oahu, the downward rate of advance of the weathering front varies from 0.004 to 0.041 m/ka. For the 0.44 to 0.10 Ma Kohala Volcano (Big Island of Hawaii) rates vary from 0.013 to 0.047 m/ka. Simple H/V spectra develop in areas where the combined effects of time and elevated rainfall produce thick LWPs with a flat base and a general absence of core stones with an ideal layered geometry. Abundant buried core stones violate the assumption of simple layered geometries and scatter acoustic energy, leading to uninterpretable results. This is common where low rainfall and a young basaltic substrate leave abundant core stones as well as an undulating contact between saprolite and bedrock. Velocity inversions (high Vs intervals within low Vs saprolite) may also be present and originate from relatively intact bedrock horizons or mineralogical changes within saprolite. At Kohala, a gibbsite-rich horizon produces such a velocity inversion due to enhanced weathering and subsequent collapse of saprolite in a discrete horizon. © 2019 John Wiley & Sons, Ltd. 相似文献
15.
Soil production and hillslope transport in mid‐latitudes during the last glacial–interglacial cycle: a combined data and modelling approach in northern Ardennes 下载免费PDF全文
The relative efficiency of various hillslope processes through Quaternary glacial–interglacial cycles in the mid‐latitudes is not yet well constrained. Based on a unique set of topographic and soil thickness data in the Ardennes (Belgium), we combine the new CLICHE model of climate‐dependent hillslope evolution with an inversion algorithm in order to get deeper insight into the ways and timing of hillslope dynamics under one such climatic cycle. We simulate the evolution of a synthetic hill reproducing the slope, curvature, and contributing area distributions of the hillslopes of a ~ 2500 km2 real area under a simple two‐stage 120‐kyr‐long climatic scenario with linear transitions between cold and warm stages. The inversion method samples a misfit function in the model parameter space, based on estimates of the fit of topographic derivative distributions in classes of soil thickness and of the relative frequencies of the predicted soil thickness classes. Though the inversion results show remarkable convergence patterns for most parameters, no unique solution emerges. We obtain five clusters of good fits, whose centroids are taken as acceptable model solutions. Based on the predicted time series of average denudation rate and soil thickness, plus snapshots of the soil distribution at characteristic times, we discuss these solutions and, comparing them with independent data not involved in the misfit function, we identify the most realistic scenario. Beyond providing first‐order estimates of several parameters that compare well with published data, our results show that denudation rates increase dramatically for a short time at both warm–cold and cold–warm transitions, when the mean annual temperature passes through the [0, ?5 °C] range. We also point to the overwhelming importance of solifluction in shaping hillslopes and transporting soil, and the role of depth‐dependent creep (including frost creep) throughout the climatic cycle, whereas the contributions of simple creep and overland flow are minor. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
16.
This is the first of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory (also known as Dupuit or Boussinesq theory). Here, we examine the effect of lateral flow on the downward fluxes of water and solutes through perched groundwater at steady state. We derive analytical expressions describing the decline in the downward flux rate with depth. Using these, we obtain analytical expressions for water age in a number of cases. The results show that when the permeability field is homogeneous, the spatial structure of water age depends qualitatively on a single dimensionless number, Hi. This number captures the relative contributions to the lateral hydraulic potential gradient of the relief of the lower‐most impermeable boundary (which may be below the weathering front within permeable or incipiently weathered bedrock) and the water table. A “scaled lateral symmetry” exists when Hi is low: age varies primarily in the vertical dimension, and variations in the horizontal dimension x almost disappear when the vertical dimension z is expressed as a fraction z/H(x) of the laterally flowing system thickness H(x). Taking advantage of this symmetry, we show how the lateral dimension of the advection–diffusion‐reaction equation can be collapsed, yielding a 1‐D vertical equation in which the advective flux downward declines with depth. The equation holds even when the permeability field is not homogeneous, as long as the variations in permeability have the same scaled lateral symmetry structure. This new 1‐D approximation is used in the accompanying paper to extend chemical weathering models derived for 1‐D columns to hillslope domains. 相似文献
17.
Runoff from boreal hillslopes is often affected by distinct soil boundaries, including the frozen boundary and the organic‐mineral boundary (OMB), where highly porous and hydraulically conductive organic material overlies fine‐grained mineral soils. Viewed from the surface, ground cover appears as a patchwork on sub‐meter scales, with thick, moss mats interspersed with lichen‐covered, silty soils with gravel inclusions. We conducted a decameter‐scale subsurface tracer test on a boreal forest hillslope in interior Alaska to quantify locations and mechanisms of transport and storage in these soils, focusing on the OMB. A sodium bromide tracer was added as a slug addition to a pit and sampled at 40 down‐gradient wells, screened primarily at the OMB and within a 7 × 12 m well field. We maintained an elevated head in the injection pit for 8.5 hr to simulate a storm. Tracer breakthrough velocities ranged from <0.12 to 0.93 m hr?1, with the highest velocities in lichen‐covered soils. After 12 hr and cessation of the elevated head, the tracer coalesced and was only detected in thick mosses at a trough in the OMB. By 24 hr, approximately 17% of the tracer mass could be accounted for. The majority of the mass loss occurred between 4 and 12 hr, while the tracer was in contact with lichen‐covered soils, which is consistent with tracer transport into deeper flow paths via preferential flow through discrete gravelly areas. Slow breakthroughs suggest that storage and exchange also occurred in shallow soils, likely related to saturation and drainage in fine‐grained mineral soils caused by the elevated hydraulic head. These findings highlight the complex nature of storage and transmission of water and solutes from boreal hillslopes to streams and are particularly relevant given rapid changes to boreal environments related to climate change, thawing permafrost and increasing fire severity. 相似文献
18.
Landscape curvature evolves in response to physical, chemical, and biological influences that cannot yet be quantified in models. Nonetheless, the simplest models predict the existence of equilibrium hillslope profiles. Here, we develop a model describing steady‐state regolith production caused by mineral dissolution on hillslopes which have attained an equilibrium parabolic profile. When the hillslope lowers at a constant rate, the rate of chemical weathering is highest at the ridgetop where curvature is highest and the ridge develops the thickest regolith. This result derives from inclusion of all the terms in the mathematical definition of curvature. Including these terms shows that the curvature of a parabolic hillslope profile varies with distance from the ridge. The hillslope model (meter‐scale) is similar to models of weathering rind formation (centimeter‐scale) where curvature‐driven solute transport causes development of the thickest rinds at highly curved clast corners. At the clast scale, models fit observations. Here, we similarly explore model predictions of the effect of curvature at the hillslope scale. The hillslope model shows that when erosion rates are small and vertical porefluid infiltration is moderate, the hill weathers at both ridge and valley in the erosive transport‐limited regime. For this regime, the reacting mineral is weathered away before it reaches the land surface: in other words, the model predicts completely developed element‐depth profiles at both ridge and valley. In contrast, when the erosion rate increases or porefluid velocity decreases, denudation occurs in the weathering‐limited regime. In this regime, the reacting mineral does not weather away before it reaches the land surface and simulations predict incompletely developed profiles at both ridge and valley. These predictions are broadly consistent with observations of completely developed element‐depth profiles along hillslopes denuding under erosive transport‐limitation but incompletely developed profiles along hillslopes denuding under weathering limitation in some field settings. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
20.
Two types of cavernous‐weathering features are exposed in the Oligocene Macigno Sandstone along 5 km of the Tuscan coast south of Livorno, Italy. Honeycomb cells (type 1 features) are typical closely spaced, more or less circular pits of centimetre scale that have been eroded 2 to 6 cm below the general surface of bedding planes or joints. ‘Aberrant honeycomb’ cells (type 2 features) are highly elongate, polygonal, or irregular ?at depressions of decimetre scale surrounded by walls rarely higher than 2 cm, some of which pass into long, free‐standing walls or tendrils. Thus, not all type 2 ‘honeycomb’ cells are fully enclosed. We measured the geometry of 551 honeycomb cells and examined various rock properties (microscopic texture and fabric, mineralogy, porosity, permeability, and chemical composition) to isolate factors that control the size, shape, distribution, and pattern of the honeycombs. Our goal was to narrow potential origins of the features and to understand their formation. The ubiquitous occurrence of sea salt in the honeycombs and scanning electron microscope evidence of physical weathering of silicates, especially micas, favours an origin for the honeycombs chie?y by salt weathering. Honeycombs do not form in siltstone, iron‐oxide‐impregnated sandstone, calcite‐cemented concretions, or in case‐hardened joints. Thus, salt weathering of type 1 and 2 honeycombs is not effective in very low permeability rocks. We propose for type 1 honeycombs that seawater is drawn into micropores of the sandstone and evolves into self‐organized diffusion cells (Turing patterns). Selective evaporation at the stationary nodes of diffusion cells, which form at the same site over time, leads to the precipitation of salt, then grains spall off, and pits are formed. The deepest pits (>40 mm) formed where Turing patterns consistently formed at the same sites. Although the walls are more porous and weathered than the host sandstone, they become selectively case hardened by an unidenti?ed component of low abundance. Initial honeycomb cell shape and gravity locally in?uenced type 1 honeycomb shapes. We suggest that type 2 honeycombs develop where diffusion‐controlled Turing patterns lead to case‐hardening along linear trends; gravity and rock fabric are important locally in in?uencing the orientation of the walls. Only type 2 cells are forming today, suggesting recent environmental changes. Gravity is not a fundamental control on honeycomb shape; in places it is a contributing factor. Pre‐existing depressions (quarry tool marks) have strongly in?uenced honeycomb shape locally. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献