首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
Recharge patterns, possible flow paths and the relative age of groundwater in the Akaki catchment in central Ethiopia have been investigated using stable environmental isotopes δ18O and δ2H and radioactive tritium (3H) coupled with conservative chloride measurements. Stable isotopic signatures are encoded in the groundwater solely from summer rainfall. Thus, groundwater recharge occurs predominantly in the summer months from late June to early September during the major Ethiopian rainy season. Winter recharge is lost through high evaporation–evapotranspiration within the unsaturated zone after relatively long dry periods of high accumulated soil moisture deficits. Chloride mass balance coupled with the isotope results demonstrates the presence of both preferential and piston flow groundwater recharge mechanisms. The stable and radioactive isotope measurements further revealed that groundwater in the Akaki catchment is found to be compartmentalized into zones. Groundwater mixing following the flow paths and topography is complicated by the lithologic complexity. An uncommon, highly depleted stable isotope and zero‐3H groundwater, observed in a nearly east–west stretch through the central sector of the catchment, is coincident with the Filwoha Fault zone. Here, deep circulating meteoric water has lost its isotopic content through exchange reactions with CO2 originating at deeper sources or it has been recharged with precipitation from a different rainfall regime with a depleted isotopic content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age‐dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ13C value (?17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ18O and δD values (?4.0 ± 0.1‰ VSMOW, n = 27; δD: ?19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface.  相似文献   

3.
Rainwater, groundwater and soil-water samples were analysed to assess groundwater geochemistry and the origin of salinity in the Ochi-Narkwa basin of the Central Region of Ghana. The samples were measured for major ions and stable isotopes (δ18O, δ2H and δ13C). The Cl? content in rainwater decreased with distance from the coast. The major hydrochemical facies were Na-Cl for the shallow groundwaters and Ca-Mg-HCO3, Na-Cl and Ca-Mg-Cl-SO4 for the deep groundwaters. Groundwater salinization is caused largely by halite dissolution and to a minor extent by silicate weathering and seawater intrusion. Stable isotope composition of the groundwaters followed a slope of 3.44, suggesting a mixing line. Chloride profiles in the soil zone revealed the existence of salt crusts, which support halite dissolution in the study area. A conceptual flow model developed to explain the mechanism of salinization showed principal groundwater flow in the NW–SE direction.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

4.
To identify the groundwater flow system in the North China Plain, the chemical and stable isotopes of the groundwater and surface water were analysed along the Chaobai River and Yongding River basin. According to the field survey, the study area in the North China Plain was classified hydrogeologically into three parts: mountain, piedmont alluvial fan and lowland areas. The change of electrical conductance and pH values coincided with groundwater flow from mountain to lowland areas. The following groundwater types are recognized: Ca? HCO3 and Ca? Mg? HCO3 in mountain areas, Ca? Mg? HCO3 and Na? K? HCO3 in piedmont alluvial fan areas, and HCO3? Na in lowland areas. The stable isotope distribution of groundwater in the study area also has a good corresponding relation with other chemical characteristics. Stable isotope signatures reveal a major recharge from precipitation and surface water in the mountain areas. Chemical and stable isotope analysis data suggest that mountain and piedmont alluvial fan areas were the major recharge zones and the lowland areas belong to the main discharge zone. Precipitation and surface water were the major sources for groundwater in the North China Plain. Stable isotopic enrichment of groundwater near the dam area in front of the piedmont alluvial fan areas shows that the dam water infiltrated to the ground after evaporation. As a result, from the stable isotope analysis, isotope value of groundwater tends to deplete from sea level (horizontal ground surface) to both top of the mountain and the bottom of the lowland areas in symmetrically. This suggests that groundwater in the study area is controlled by the altitude effect. Shallow groundwater in the study area belongs to the local flow system and deep groundwater part of the regional flow system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Stable isotope tracers of δ18O and δ2H are increasingly being applied in the study of water cycling in regional-scale watersheds in which human activities, like river regulation, are important influences. In 2015, δ18O and δ2H were integrated into a water quality survey in the Muskoka River Watershed with the aim to provide new regional-scale characterization of isotope hydrology in the 5,100-km2 watershed located on the Canadian Shield in central Ontario, Canada. The forest dominated region includes ~78,000 ha of lakes, 42 water control structures, and 11 generating stations, categorized as “run of river.” Within the watershed, stable isotope tracers have long been integrated into hydrologic process studies of both headwater catchments and lakes. Here, monthly surveys of δ18O and δ2H in river flow were conducted in the watershed between April 2015 and November 2016 (173 surface water samples from 10 river stations). Temporal patterns of stable isotopes in river water reflect seasonal influences of snowmelt and summer-time evaporative fractionation. Spatial patterns, including differences observed during extreme flood levels experienced in the spring of 2016, reflect variation in source contributions to river flow (e.g., snowmelt or groundwater versus evaporatively enriched lake storage), suggesting more local influences (e.g., glacial outwash deposits). Evidence of combined influences of source mixing and evaporative fractionation could, in future, support application of tracer-enabled hydrological modelling, estimation of mean transit times and, as such, contribute to studies of water quality and water resources in the region.  相似文献   

6.
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Fractured rock aquifers cover much of Earth's surface and are important mountain sites for groundwater recharge but are poorly understood. To investigate groundwater systematics of a fractured-dominated aquifer in Baja California Sur, Mexico, we examined the spatial patterns of aquifer recharge and connectivity using the geochemistry of springs. We evaluate a range of geochemical data within the context of two endmember hypotheses describing spatial recharge patterns and fracture connectivity. Hypothesis 1 is that the aquifer system is segmented, and springs are fed by local recharge. Hypothesis 2 is that the aquifer system is well connected, with dominant recharge occurring in the higher elevations. The study site is a small <15 km2 catchment. Thirty-four distinct springs and two wells were identified in the study area, and 24 of these sites were sampled for geochemical analyses along an elevation gradient and canyon transect. These analyses included major ion composition, trace element and strontium isotopes, δ18O and δ2H isotopes, radiocarbon, and tritium. δ18O and δ2H isotopes suggest that the precipitation feeding the groundwater system has at least two distinct sources. Carbon isotopes showed a change along the canyon transect, suggesting that shorter flowpaths feed springs in the top of the transect, and longer flowpaths discharge near the bottom. Geochemical interpretations support a combination of the two proposed hypotheses. Understanding of the connectivity and provenance of these springs is significant as they are the primary source of water for the communities that inhabit this region and may be impacted by changes in recharge and use.  相似文献   

8.
Stable isotopes of water are known to provide information on mean altitudes of spring recharge areas, which is an important parameter for groundwater resources management especially in karstic environments. Very often, a lack of precipitation input data limits the possibility for an appropriate estimation of mean catchment altitudes. In the Jeita spring catchment, Lebanon, a characterization of precipitation input was possible with samples collected at six stations at varying altitudes (88 amount‐weighted monthly samples). A local meteoric water line for the Jeita spring catchment was characterized as δ2H = 6.04 * δ18O + 8.45 (R 2 = .92) for a 2‐year observation period between October 2012 and September 2014. Integral samples from the snow layer were collected at 22 sites at altitudes ranging from 1,000 to 2,300 m above sea level at the end of February 2012 and February 2013, when snow height reached a maximum of more than 6 m at the highest peak in the catchment. Water samples were continuously collected from six springs (Jeita, Kashkoush, Labbane, Assal, Afqa, and Rouaiss). Jeita spring water samples were collected additionally in daily time steps during the snowmelt season in 2012. Mean isotope values of the sampled springs range from ?6.8‰ to ?8.2‰, and from ?33‰ to ?44‰, for δ18O and δ2H, respectively. The stable isotope data show that input variability (space and time, snow cover, and rainfall) has direct impacts on mean altitude estimates of spring catchments. A more profound interpretation of spring response to rainfall for six local springs in the Lebanon Mountains was possible in comparison to four earlier described springs collected in the Anti‐Lebanon Mountains in Syria.  相似文献   

9.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Aquatic plants are essential for maintaining the diversity and stability of a lake ecosystem. Stable carbon isotopes (δ13C) of macrophytes have been widely used as a powerful tool to study ecological processes and paleoenvironmental evolution in lakes. Varying results are obtained when using the δ13C of macrophytes to study the changes in the lake environment at different spatio-temporal scales. Thus, sample preparation and subsequent laboratory analyses are crucial for studying environmental changes using the isotopic signal retained in the macrophytes, and are essential for the interpretation of isotope-environment relationships. This study analyzed the δ13C of different tissue components of macrophytes in three lakes of the lower Yangtze River basin, and a correlation analysis was performed on aquatic environments influencing the δ13C values in the different tissue components of macrophytes. The test results showed the difference between the δ13C values of the whole sample and cellulose. Relative analyses indicated that the major factors contributing to the δ13C variability in macrophytes were pH and the concentration of dissolved inorganic carbon (DIC). The δ13C of α-cellulose (δ13CAC) is more sensitive to environmental variables than that of the whole sample (δ13CW) and holocellulose (δ13CHC). The results of this study imply that extraction of α-cellulose is a prerequisite for research on the changes in lake environment using δ13C of macrophytes. This study aims to provide theoretical and data basis for further research on the environmental and ecological change using stable carbon isotopes of aquatic plants.  相似文献   

11.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

12.
High-elevation mountains often constitute for basins important groundwater recharge sources through mountain-front recharge processes. These processes include streamflow losses and subsurface inflow from the mountain block. However, another key recharge process is from irrigation practices, where mountain streamflow is distributed across the irrigated piedmont. In this study, coupled groundwater fluctuation measurements and environmental tracers (18O, 2H, and major ions) were used to identify and compare the natural mountain-front recharge to the anthropogenically induced irrigation recharge. Within the High Atlas mountain front of the Ourika Basin, Central Morocco, the groundwater fluctuation mapping from the dry to wet season showed that recharge beneath the irrigated area was higher than the recharge along the streambed. Irrigation practices in the region divert more than 65% of the stream water, thereby reducing the potential for in-stream groundwater recharge. In addition, the irrigation areas close to the mountain front had greater water table increases (up to 3.5 m) compared with the downstream irrigation areas (<1 m increase). Upstream crops have priority to irrigation with stream water over downstream areas. The latter are only irrigated via stream water during large flood events and are otherwise supplemented by groundwater resources. These changes in water resources used for irrigation practices between upstream and downstream areas are reflected in the spatiotemporal evolution of the stable isotopes of groundwater. In the upstream irrigation area, the groundwater stable isotope values (δ18O: −8.4‰ to −7.4‰) reflect recharge by the diverted stream water. In the downstream irrigation area, the groundwater isotope values are lower (δ18O: −8.1‰ to −8.4‰) due to recharge via the flood water. In the nonirrigation area, the groundwater has the highest stable isotope values (δ18O: −6.8‰ to −4.8‰). This might be due to recharge via subsurface inflow from the mountain block to the mountain front and/or recharge via local low altitude rainfall. These findings highlight that irrigation practices can result in the dominant mountain-front recharge process for groundwater.  相似文献   

13.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

14.
Comprehensive studies on the spatial distribution, water quality, recharge source, and hydrochemical evolution of regional groundwater form the foundation of rational utilization of groundwater resources. In this study, we investigated the water levels, hydrochemistry, and stable isotope composition of groundwater in the vicinity of the Qinghai Lake in China to reveal its recharge sources, hydrochemical evolution, and water quality. The level of groundwater relative to the level of water in the Qinghai Lake ranged from −1.27 to 122.91 m, indicating most of the groundwater to be flowing into the lake. The local evaporation line (LEL) of groundwater was simulated as δ2H = 6.08 δ18O-3.01. The groundwater surrounding the Qinghai Lake was primarily recharged through local precipitation at different altitudes. The hydrochemical type of most of the groundwater samples was Ca-Mg-HCO3; the hydrochemistry was primarily controlled by carbonate dissolution during runoff. At several locations, the ionic concentrations in groundwater exceeded the current drinking water standards making it unsuitable for drinking. The main source of nitrate in groundwater surrounding the Qinghai Lake was animal feces and sewage, suggesting that groundwater pollution should be mitigated in areas practicing animal husbandry in the Qinghai-Tibet Plateau, regardless of industrial and urbanization rates being relatively low in the region. The scientific planning, engineering, and management of livestock manure and wastewater discharge from animal husbandry practices is a crucial and is urgently required in the Tibetan Plateau.  相似文献   

15.
Stable isotopic compositions (δ18O and d-excess) from 25 rivers in Thailand were analysed monthly during 2013–2015. Results indicated that monsoon precipitation fundamentally influences the river isotopes. The overland flow supplied from monsoon precipitation and human-altered flow regimes produces considerable isotopic variability. Spatial and temporal variations were observed among four principal geographical regions. The seasonality of monsoon precipitation in mountainous Thailand produced large variations in isotopic compositions because most rainfall occurred during the southwest monsoon, and dry conditions prevailed during the northeast monsoon. The northern and northeastern regions are mountainous, highland areas. Low δ18O values were found in these regions, likely because of altitude effects on precipitation. Conversely, monsoonal precipitation continually supplies rivers in southern Thailand all year round, producing higher and more consistent δ18O values than in the other regions. The Chao Phraya plain in the central region experienced enrichment of δ18O river runoff related to evaporation in irrigation systems. Larger catchment areas and longer residence times resulted in more pronounced evaporation effects, producing lower values of d-excess and local river water line slopes compared with precipitation. The isotopic differences between river waters and precipitation were utilized to determine river recharge elevations and water transit time. The methods presented here can be used to explore hydrological interactions in other tropical river basins.  相似文献   

16.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

17.
A riparian ecosystem downstream of a small dam in central Texas was instrumented for sap flow, soil moisture content, and stream level from 2001. Stable isotopes in water (D and 18O) were analysed from rainfall, stream, lake, and cored sapwood cellulose from cedar elm (Ulmus crassifolia). The isotope signature of water source to cedar elm was identified by back calculation starting with the water isotopes in cellulose, and accounting for leaf‐water evaporation and biological fractionation during cellulose synthesis. The estimated mean isotope of the source water to cedar elm was enriched above rainfall in similarity to stream water during 2002. Flow paths that may have contributed to estimated variability from regional base flow and recharge water were identified using the variably saturated HYDRUS‐2D model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

This study aims to differentiate the potential recharge areas and flow mechanisms in the North-eastern Basin, Palestine. The results differentiate the recharge into three main groups. The first is related to springs and some of the deep wells close to the Anabta Anticline, through the Upper Aquifer (Turonian) formation, with depleted δ18O and δ2H. The second is through the Upper Cenomanian formation surrounding the Rujeib Monocline in the southeast, where the lineament of the Faria Fault plays an important role, with relatively enriched δ13CDIC values of about ?4‰ (VPDB). The third is the Jenin Sub-series, which shows higher δ13CDIC values, with enriched δ18O and δ2H and more saline content. The deep wells from the Nablus area in the south of the basin indicate low δ13CDIC values due to their proximity to freshwater infiltrating faults. The deep wells located to the northwest of the basin have δ13CDIC values from ?8 to ?9‰ (VPDB), with enriched δ18O signatures, indicating slow recharge through thick soil.  相似文献   

19.
This paper describes the application of environmental isotopes and injected tracer techniques in estimating the contribution of storms as well as annual precipitation to groundwater recharge and its circulation, in the semi‐arid region of Bagepalli, Kolar district, Karnataka. Environmental isotopes 2H, 18O and 3H were used to study the effect of storms on the hydrological system, and an isotope balance was used to compute the contribution of a storm component to the groundwater. Some of the groundwater samples collected during the post‐storm periods were highly depleted in stable isotope content with higher deuterium excess relative to groundwater from the pre‐storm periods. Significant variation in deuterium excess in groundwater from the same area, collected in two different periods, indicates the different origin of air masses. The estimated recharge component of a storm event of 600 mm to the groundwater was found to be in the range of 117–165 mm. There was no significant variation in environmental tritium content of post‐storm and pre‐storm groundwater, indicating the fast circulation of groundwater in the system. After completion of the environmental isotope work, an injected radiotracer 3H technique was applied to estimate the direct recharge of total precipitation to the groundwater. The estimated recharge to the groundwater is 33 mm of the 550 mm annual precipitation during 1992. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Precipitation is a major component of the hydrologic cycle in arid desert areas. To date, however, few studies have been conducted on investigating the isotope characteristics and moisture sources of precipitation in arid desert environments. The Alxa Desert Plateau is a critical arid desert area in North China. This study is the first to analyse the stable isotopic composition of precipitation to identify the sources of atmospheric moisture over this plateau. Our results show that the δD and δ18O values of precipitation across the plateau change greatly at both daily and monthly timescales, and exhibit seasonal variations. Among the main meteorological parameters, atmospheric temperature is the most predominant factor controlling the isotopic composition and the δD–δ18O relationship of local precipitation. Analyses of the precipitation isotopes with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model reveal that (a) the westerly and polar moisture sources are the dominant controls on summer and winter precipitation and (b) the evaporation of local lake water significantly affects winter precipitation even though it only represents a small amount. Based on the isotope data of 2013–2016 precipitation, a local meteoric water line (LMWL) is derived: δD = (8.20 ± 0.22)·δ18O + (8.15 ± 2.16)‰ for the study site. Compared to the global meteoric water line, the LMWL has a greater slope and lower d‐excess. This can be explained by admixing of atmospheric moisture resulting from the evaporation of local lake water. Based on this LMWL, we are able to trace that groundwater of the Badain Jaran Desert originates from the surrounding mountains with altitudes of <4,000 m. The newly derived LMWL shows that the recharge altitudes of desert groundwater are overestimated on the basis of the previous LMWLs. This study not only provides insights into the hydrological cycle but also offers guidance for water resource management in arid desert areas of China. Additionally, this study provides techniques that can be applied to the analyses of precipitation isotopes in similar arid regions of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号