共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrological regimes in the Yellow River have changed significantly because of climate change and intensive human interventions. These changes present severe challenges to water resource utilization and ecological development. Variation of run‐off, suspended sediment load (SSL), and eight precipitation indices (P1: 0–12 mm·day?1, P12: 12–25 mm·day?1, P25: 25–50 mm·day?1, P50: P ≥ 50 mm·day?1 and corresponding rainfall day: Pd1, Pd12, Pd25, Pd50 day year?1) in three critical parts of the Yellow River basin (source region: SRYRB, upper reaches: URYRB, middle reaches: MRYRB) were investigated for the period from 1960 to 2015. The results show that run‐off and SSL significantly decreased (P < 0.01) in the URYRB and the MRYRB, whereas their decline in the SRYRB was insignificant (P > 0.05). Moreover, run‐off in the URYRB had one change point in 1987, and SSL in the URYRB as well as run‐off and SSL in the MRYRB had two change points (in the 1970s and the 1990s). Over the same period, only Pd1 and Pd12 in the SRYRB showed significant increasing trends, and an abrupt change appeared in 1981. The optimal precipitation indices for assessing the effects of precipitation on run‐off and SSL in the URYRB and MRYRB were Pd50 and P12, respectively. A double‐mass curve analysis showed that precipitation and human activities contributed to approximately 20% and 80% of the reduction in run‐off, respectively, for both the SRYRB and the MRYRB. However, the contribution rate of precipitation and human activities on SSL reduction was approximately 40% and 60% in the URYRB and 5% and 95% in the MRYRB, respectively. Human activities, primarily soil and water conservation measures and water extraction (diversion), were the main factors (>50%) that reduced the run‐off. However, the dominant driving factors for SSL reduction were soil and water conservation measures and reservoir interception, for which the contribution rate was higher than 70% in the MRYRB. This work strengthens the understanding of hydrological responses to precipitation change and provides a useful reference for regional water resource utilization. 相似文献
2.
In‐stream sediment transport plays an important role in delivery of sediment‐associated terrestrial elements. Investigating the history of fluvial sediment regime responding to changes in natural and anthropogenic driving forces provides a theoretical basis for establishment of optimal strategies on catchment management. The present study aims to systematically detect the patterns of change in sediment load at two key hydrological stations (Pengshan and Gaochang) in the Minjiang River and quantitatively evaluate the relative contributions of regional precipitation change and multiple local human activities to the observed sediment variations. Abrupt change in annual sediment load was detected in 1990 at Pengshan and in 1968, 1980 and 1992 at Gaochang. Compared with the baseline period of 1957–1990, precipitation decline and human activities had respectively contributed to 5 × 106 t and 2 × 106 t of reduction in mean annual sediment load at Pengshan during 1991–2007. For the entire Minjiang basin, taking 1956–1968 as the baseline period, precipitation decline and human activities had relatively contributed to 10 × 106 t and 18 × 106 t of reduction in mean annual sediment load at Gaochang during 1969–1980. During 1981–1992, precipitation decline had relatively contributed to 5 × 106 t of reduction in mean annual sediment load, but human activities had led to 3 × 106 t of increase in mean annual sediment load. During 1993–2009, 13 × 106 t and 17 × 106 t of reduction in mean annual sediment load may be attributed to precipitation decline and human activities, respectively. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
3.
Response of streamflow to climate change and human activity in Xitiaoxi river basin in China 下载免费PDF全文
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
Climate change and land use and cover change (LUCC) have had great impacts on watershed hydrological processes. Although previous studies have focused on quantitative assessment of the impacts of climate change and human activities on decreasing run‐off change, few studies have examined regions that have significant increasing run‐off due to both climate variability and land cover change. We show that annual run‐off had a significant increasing trend from 1956 to 2014 in the U.S. lower Connecticut River Basin. Abrupt change point years of annual run‐off for four subbasins are detected by nonparametric Mann–Kendall–Sneyers test and reconfirmed by the double mass curve. We then divide the study period into 2 subperiods at the abrupt change point year in the early 1970s for each subbasin. The Choudhury–Yang equation based on Budyko hypothesis was used to calculate precipitation and potential evapotranspiration, and landscape elasticities of run‐off. The results show that the difference in mean annual run‐off between 2 subperiods for each subbasin ranged from 102 to 165.6 mm. Climate variations were the primary drivers of increasing run‐off in this region. Quantitative contributions of precipitation and potential evapotranspiration in all subbasins are 106.5% and ?3.6% on average, respectively. However, LUCC contributed both positively and negatively to run‐off: ?18.6%, ?13.3%, and 10.1% and 9.9% for 4 subbasins. This may be attributed to historical LUCC occurring after the abrupt change point in each subbasin. Our results provide critical insight on the hydrological dynamics of north‐east tidal river systems to communities and policymakers engaged in water resources management in this region. 相似文献
5.
The Budyko framework is an efficient tool for investigating catchment water balance, focusing on the effects of seasonal changes in climate (S) and vegetation cover (M) on catchment evapotranspiration (ET). However, the effects of vegetation seasonality on ET remain largely unknown. The present study explored these effects by modelling interannual variations in ET considering vegetation and climate seasonality using the Budyko framework. Reconstructed 15-day GIMMS NDVI3g timeseries data from 1982 to 2015 were used to estimate M and extract the relative duration of the vegetation growing season (GL) in the Yellow River Basin (YRB). To characterize S, seasonal variations in precipitation and potential ET were extracted using a Gaussian algorithm. Analysis of the observed datasets for 19 catchments revealed that interannual variation in the catchment parameter ϖ (in Fuh's equation) was significantly and positively correlated with M and GL. Conversely, ϖ was significantly but negatively correlated with S. Furthermore, stepwise linear regression was used to calibrate the empirical formula of ϖ for these three dimensionless parameters. Following validation, based on observations in the remaining 11 catchments, ϖ was integrated into Fuh's equation to accurately estimate annual ET. Over 79% subcatchments showed an upward trend (0.9 mm yr−1), whereas fewer than 21% subcatchments showed a downward trend (−0.5 mm yr−1) across YRB. In the central region of the middle reach, ET increased with increased M, prolonged GL, and decreased S, whereas in the source region of YRB, ET decreased with decreased M and shortened GL. Our study provides an alternative method to estimate interannual ET in ungauged catchments and offers a novel perspective to investigate hydrological responses to vegetation and climate seasonality in the long-term. 相似文献
6.
Relative effects of human activities and climate change on the river runoff in an arid basin in northwest China 下载免费PDF全文
Understanding the mechanisms of river runoff variation is important for the effective management of water resources in arid and semi‐arid regions. This study uses long‐term observational data as a basis for examining the effects of human activities and climate change on the runoff variation of Jinghe River Basin, a typical arid inland basin in northwest China. A distributed hydrological model called the Soil and Water Assessment Tool, combined with a sequential cluster method and a separation approach, was used to quantify and distinguish the effects of human activities and climate change on runoff. The hydrological sequence before 1981 can be considered natural. However, human activities have significantly affected runoff since 1981. The runoff reduction caused by human activities between 1981 and 2008 accounted for 85.7% of the total reduction in the downstream of Jinghe River, whereas that caused by climatic variation was only 14.3%. This observation suggests that human activities are the major driver of runoff variation in the basin. Although the role of climate change in driving runoff variation has been identified to be prevalent and dominant in arid regions, this study highlights the importance of human activities. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
7.
Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin,China 总被引:3,自引:0,他引:3 下载免费PDF全文
Variations in streamflows of five tributaries of the Poyang Lake basin, China, because of the influence of human activities and climate change were evaluated using the Australia Water Balance Model and multivariate regression. Results indicated that multiple regression models were appropriate with precipitation, potential evapotranspiration of the current month, and precipitation of the last month as explanatory variables. The NASH coefficient for the Australia Water Balance Model was larger than 0.842, indicating satisfactory simulation of streamflow of the Poyang Lake basin. Comparison indicated that the sensitivity method could not exclude the benchmark‐period human influence, and the human influence on streamflow changes was overestimated. Generally, contributions of human activities and climate change to streamflow changes were 73.2% and 26.8% respectively. However, human‐induced and climate‐induced influences on streamflow were different in different river basins. Specifically, climate change was found to be the major driving factor for the increase of streamflow within the Rao, Xin, and Gan River basins; however, human activity was the principal driving factor for the increase of streamflow of the Xiu River basin and also for the decrease of streamflow of the Fu River basin. Meanwhile, impacts of human activities and climate change on streamflow variations were distinctly different at different temporal scales. At the annual time scale, the increase of streamflow was largely because of climate change and human activities during the 1970s–1990s and the decrease of streamflow during the 2000s. At the seasonal scale, climate change was the main factor behind the increase of streamflow in the spring and summer season. Human activities increase the streamflow in autumn and winter, but decrease the streamflow in spring. At the monthly scale, different influences of climate change and human activities were detected. Climate change was the main factor behind the decrease of streamflow during May to June and human activities behind the decrease of streamflow during February to May. Results of this study can provide a theoretical basis for basin‐scale water resources management under the influence of climate change and human activities. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmelt‐dominated upper Tuolumne Basin,Sierra Nevada 下载免费PDF全文
Nicoleta C. Cristea Jessica D. Lundquist Steven P. Loheide II Christopher S. Lowry Courtney E. Moore 《水文研究》2014,28(12):3896-3918
We investigated, through hydrologic modelling, the impact of the extent and density of canopy cover on streamflow timing and on the magnitude of peak and late summer flows in the upper Tuolumne basin (2600–4000 m) of the Sierra Nevada, California, under current and warmer temperatures. We used the Distributed Hydrology Soil Vegetation Model for the hydrologic modelling of the basin, assuming four vegetation scenarios: current forest (partial cover, 80% density), all forest (uniform coverage, 80% density), all barren (no forest) and thinned forest (partial cover, 40% density) for a medium‐high emissions scenario causing a 3.9 °C warming over a 100‐year period (2001–2100). Significant advances in streamflow timing, quantified as the centre of mass (COM) of over 1 month were projected for all vegetation scenarios. However, the COM advances faster with increased forest coverage. For example, when forest covered the entire area, the COM occurred on average 12 days earlier compared with the current forest coverage, with the rate of advance higher by about 0.06 days year?1 over 100 years and with peak and late summer flows lower by about 20% and 27%, respectively. Examination of modelled changes in energy balance components at forested and barren sites as temperatures rise indicated that increases in net longwave radiation are higher in the forest case and have a higher contribution to melting earlier in the calendar year when shortwave radiation is a smaller fraction of the energy budget. These increases contributed to increased midwinter melt under the forest at temperatures above freezing, causing decreases in total accumulation and higher winter and early spring melt rates. These results highlight the importance of carefully considering the combined impacts of changing forest cover and climate on downstream water supply and mountain ecosystems. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
AbstractQuantitative assessment of the effects of climate change and human activities on runoff is very important for regional sustainable water resources adaptive management. In this study, the non-parametric Mann-Kendall test is used to identify the trends in and change points of the annual runoff with the aim of analysing the changing characteristics of the hydrological cycle. The study presents the analytical derivation of a method which combines six Budyko hypothesis-based water–energy balance equations with the Penman-Monteith equation to separate the effects of climate change and human activities. The method takes several climate variables into consideration. Results based on data from the Yongding River basin, China, show that climate change is estimated to account for 10.5–12.6% of the reduction in annual runoff and human activities contribute to 87.4–89.5% of the runoff decline. The results indicate that human activities are the main driving factors for the reduction in runoff.
Editor Z.W. Kundzewicz; Associate editor C.Y. Xu 相似文献
10.
Balancing trade‐off issues in land use change and the impact on streamflow and salinity management 下载免费PDF全文
Xiang Cheng Kurt K. Benke Craig Beverly Brendan Christy Anna Weeks Kirsten Barlow Mark Reid 《水文研究》2014,28(4):1641-1662
The south‐west region of the Goulburn–Broken catchment in the south‐eastern Murray–Darling Basin in Australia faces a range of natural resource challenges. A balanced strategy is required to achieve the contrasting objectives of remediation of land salinization and reducing salt export, while maintaining water supply security to satisfy human consumption and support ecosystems. This study linked the Catchment Analysis Tool (CAT), comprising a suite of farming system models, to the catchment‐scale CATNode hydrological model to investigate the effects of land use change and climate variation on catchment streamflow and salt export. The modelling explored and contrasted the impacts of a series of different revegetation and climate scenarios. The results indicated that targeted revegetation to only satisfy biodiversity outcomes within a catchment is unlikely to have much greater impact on streamflow and salt load in comparison with simple random plantings. Additionally, the results also indicated that revegetation to achieve salt export reduction can effectively reduce salt export while having a disproportionately smaller affect on streamflows. Furthermore, streamflow declines can be minimized by targeting revegetation activities without significantly altering salt export. The study also found that climate change scenarios will have an equal if not more significant impact on these issues over the next 70 years. Uncertainty in CATNode streamflow predictions was investigated because of the effect of parameter uncertainty. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
气候变化和人类活动对鄱阳湖流域径流过程影响的定量分析 总被引:3,自引:2,他引:3
量化气候变化和人类活动对流域水文影响及其对流域水资源规划和管理具有重要的理论与现实意义.采用水文模型和多元回归法定量分析气候变化和人类活动对鄱阳湖"五河"径流的影响,并通过与灵敏度分析法对比来进一步验证分析结果 .研究表明,1970-2009年,气候变化和人类活动对鄱阳湖流域径流增加的贡献率分别为73%和27%.气候变化是饶河、信江和赣江径流增加的主导因素,而人类活动是修水径流增加的主要因素,是抚河径流减少的主要原因.另外,不同季节影响径流变化的主导因素又有不同,人类活动为干季(11月到次年2月)径流增加和湿季(4-6月)径流减小的主导因素,其贡献率分别为78.9%和82.7%.本研究可为鄱阳湖流域防洪抗旱及水资源优化配置提供重要科学依据. 相似文献
12.
13.
Based on the hydrological and meteorological data recorded for the northern and southern headstreams of the Tarim River over the last 50 years, this paper analyses the variation characteristics of high‐flow and low‐flow indexes of annual runoff, air temperature and precipitation using a non‐parametric test. Additionally, this paper also studies the correlations between these three time series on multiple time scales for both northern and southern headstreams employing wavelet analysis. The results show the following: (i) the annual runoff and air temperature had significant increasing trends, whereas precipitation had a non‐significant increasing trend for the northern and southern headstreams. (ii) Abrupt changes appeared in precipitation in the north and south in 1990 and 1986, as well as in high‐flow and low‐flow indexes of annual runoff in 1993 and in air temperature in 1996. (iii) In the case of the northern headstreams, there was significant periodicity of 6 years in both high‐flow and low‐flow indexes and air temperature and of 3 and 8 years in precipitation. In the case of the southern headstreams, there was significant periodicity of 3 and 9 years in high‐flow and low‐flow indexes, 5 years in air temperature, and 5 and 8 years in precipitation. (iv) The high‐flow and low‐flow indexes in the headstreams of the Tarim River are closely related to the air temperature and precipitation. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
Shanhu Jiang Menghao Wang Liliang Ren Chong‐Yu Xu Fei Yuan Yi Liu Yujie Lu Hongren Shen 《水文研究》2019,33(7):1075-1088
Climate change and human activities are two major driving forces affecting the hydrologic cycle, which further influence the stationarity of the hydrologic regime. Hydrological drought is a substantial negative deviation from the normal hydrologic conditions affected by these two phenomena. In this study, we propose a framework for quantifying the effects of climate change and human activities on hydrological drought. First, trend analysis and change‐point test are performed to determine variations of hydrological variables. After that, the fixed runoff threshold level method (TLM) and the standardized runoff index (SRI) are used to verify whether the traditional assessment methods for hydrological drought are applicable in a changing environment. Finally, two improved drought assessment methods, the variable TLM and the SRI based on parameter transplantation are employed to quantify the impacts of climate change and human activities on hydrological drought based on the reconstructed natural runoff series obtained using the variable infiltration capacity hydrologic model. The results of a case study on the typical semiarid Laohahe basin in North China show that the stationarity of the hydrological processes in the basin is destroyed by human activities (an obvious change‐point for runoff series is identified in 1979). The traditional hydrological drought assessment methods can no longer be applied to the period of 1980–2015. In contrast, the proposed separation framework is able to quantify the contributions of climate change and human activities to hydrological drought during the above period. Their ranges of contributions to hydrological drought calculated by the variable TLM method are 20.6–41.2% and 58.8–79.4%, and the results determined by the SRI based on parameter transplantation method are 15.3–45.3% and 54.7–84.7%, respectively. It is concluded that human activities have a dominant effect on hydrological drought in the study region. The novelty of the study is twofold. First, the proposed method is demonstrated to be efficient in quantifying the effects of climate change and human activities on hydrological drought. Second, the findings of this study can be used for hydrological drought assessment and water resource management in water‐stressed regions under nonstationary conditions. 相似文献
15.
Impact of climate change on 24‐h design rainfall depth estimation in Qiantang River Basin,East China
The frequency and magnitude of extreme meteorological or hydrological events such as floods and droughts in China have been influenced by global climate change. The water problem due to increasing frequency and magnitude of extreme events in the humid areas has gained great attention in recent years. However, the main challenge in the evaluation of climate change impact on extreme events is that large uncertainty could exist. Therefore, this paper first aims to model possible impacts of climate change on regional extreme precipitation (indicated by 24‐h design rainfall depth) at seven rainfall gauge stations in the Qiantang River Basin, East China. The Long Ashton Research Station‐Weather Generator is adopted to downscale the global projections obtained from general circulation models (GCMs) to regional climate data at site scale. The weather generator is also checked for its performance through three approaches, namely Kolmogorov–Smirnov test, comparison of L‐moment statistics and 24‐h design rainfall depths. Future 24‐h design rainfall depths at seven stations are estimated using Pearson Type III distribution and L‐moment approach. Second, uncertainty caused by three GCMs under various greenhouse gas emission scenarios for the future periods 2020s (2011–2030), 2055s (2046–2065) and 2090s (2080–2099) is investigated. The final results show that 24‐h design rainfall depth increases in most stations under the three GCMs and emission scenarios. However, there are large uncertainties involved in the estimations of 24‐h design rainfall depths at seven stations because of GCM, emission scenario and other uncertainty sources. At Hangzhou Station, a relative change of ?16% to 113% can be observed in 100y design rainfall depths. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
The responses of hydrological processes and sediment yield to land‐use and climate change in the Be River Catchment,Vietnam 下载免费PDF全文
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, these effects are quantified using three methods, namely, multi‐regression, hydrologic sensitivity analysis, and hydrologic model simulation. A conceptual framework is defined to separate the effects. As an example, the change in annual runoff from the semiarid Laohahe basin (18 112 km2) in northern China was investigated. Non‐parametric Mann‐Kendall test, Pettitt test, and precipitation‐runoff double cumulative curve method were adopted to identify the trends and change‐points in the annual runoff from 1964 to 2008 by first dividing the long‐term runoff series into a natural period (1964–1979) and a human‐induced period (1980–2008). Then the three quantifying methods were calibrated and calculated, and they provided consistent estimates of the percentage change in mean annual runoff for the human‐induced period. In 1980–2008, human activities were the main factors that reduced runoff with contributions of 89–93%, while the reduction percentages due to changes in precipitation and potential evapotranspiration only ranged from 7 to 11%. For the various effects at different durations, human activities were the main reasons runoff decreased during the two drier periods of 1980–1989 and 2000–2008. Increased runoff during the wetter period of 1990–1999 is mainly attributed to climate variability. This study quantitatively separates the effects of climate variability and human activities on runoff, which can serve as a reference for regional water resources assessment and management. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
Over‐bank flooding is one of the driving forces controlling ecological integrity of riparian wetlands. Indentifying natural over‐bank flooding regime and its temporal variations is crucial for developing conservation and restoration plans and making water resources management policies for these ecosystems. Along the midstream of the Wei River in Xi'an, China lies the Jingwei riparian wetland, which was well preserved until the 1970s. Based on historical record of hydrological and morphological data of the Wei River from 1951 to 2000, we analysed temporal variations of over‐bank flooding frequency, duration, and timing in this paper. The natural annual over‐bank flooding regime was identified as having an occurrence frequency of 2·2 times a year and average duration of 5·3 days; these flooding events typically occur between June and September with occasional occurrence in late spring and late autumn. Over‐bank flooding occurrence frequency and duration decreased significantly during the 1990s, seasonal events of over‐bank floods were changed through reduced flooding frequency during summer and disappearing flooding events in late spring and late autumn. Further investigations showed that reduced discharge in the Wei River was the principal cause for these changes in over‐bank flooding dynamics. Our analysis also showed that decreased discharge of the Wei River during the 1990s was attributed near equally to disturbances from human activities and decreased regional precipitation. Results from this study may help reestablish natural over‐bank flooding dynamics in order to ensure successful restoration of Jingwei riparian wetland. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
The change of annual stream flow in the Shiyang river basin, a typical arid‐inland basin in north‐west China, was investigated using hydrological, meteorological and water‐related human activities' data of the past 50 years. The long‐term trends of the hydrological time series were examined by non‐parametric techniques, including the Pettitt and Mann–Kendall tests. Double cumulative curves and multi‐regression methods were used to separate and quantify the effects of climate changes and human activities on the stream flows. The results show that the study area has been experiencing a significant upward warming trend since 1986 and precipitation shows a decreasing trend in the mountainous region but an increasing trend in the plains region. All stream flows in the upper reach and lower reaches of the Shiyang river exhibit decreasing tendencies. Since 1970, human activities, such as irrigation, have had a significant effect on the upstream flow, and account for 60% of total flow decreases in the 1970s. However, climate changes are the main reason for the observed flow decreases in the 1980s and 1990s, with contributions to total flow decrease of 68% and 63%, respectively. Before 1975, flow decreases in the upper reaches were the main factor causing reduced flows in the lower reaches of the Shiyang river. After 1975, the effect of human activities became more pronounced, with contributions of 63%, 68% and 56% to total flow decreases in the lower reaches of the Shiyang river in the periods 1975 to 1980, 1980s and 1990s, respectively. As a result, climate change is responsible for a large proportion of the flow decreases in the upstream section of the catchment during the 1980s and 1990s, while human activities have caused flow decreases downstream during the same period. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
20.
Changchun Xu Yaning Chen Yimit Hamid Tiyip Tashpolat Yapeng Chen Hongtao Ge Weihong Li 《水文研究》2009,23(14):2045-2055
Spatio‐temporal variation of snow depth in the Tarim River basin has been studied by the empirical orthogonal function (EOF) based on the data collected by special sensor microwave/imager (SSM/I) and scanning multichannel microwave radiometer (SMMR) during the period from 1979 to 2005. The long‐term trend of snow depth and runoff was presented using the Mann‐Kendall non‐parametric test, and the effects of the variations of snow depth and climatic factors on runoff were analysed and discussed by means of the regression analysis. The results suggested that the snow depth variation on the entire basin was characterised by four patterns: all consistency, north–south contrast, north‐middle‐south contrast and complex. The first pattern accounting 39·13% of the total variance was dominant. The entire basin was mainly affected by one large‐scale weather system. However, the spatial and temporal differences also existed among the different regions in the basin. The significant snow depth changes occurred mainly in the Aksu River basin with the below‐normal snow depth anomalies in the 1980s and the above‐normal snow depth anomalies in the 1990s. The long‐term trend of snow depth was significant in the northwestern, western and southern parts of the basin, whereas the long‐term trend of runoff was significant in the northwestern and northeastern parts. The regression analysis revealed that the runoff of the rivers replenished by snow melt water and rainfall was related primarily to the summer precipitation, followed by the summer temperature or the maximum snow depth in the cold season. Our results suggest that snow is not the principal factor that contributes to the runoff increase in headstreams, although there was a slow increase in snow depth. It is the climatic factors that are responsible for the steady and continuous water increase in the headstreams. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献